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In this paper, we derive novel convergence and inference results for the optimal kernel-based
plug-in estimator of the expected value of a density considered in Giné and Nickl (2008a). We
show that the estimator remains asymptotically normal when the density is highly irregular and
when the bandwidth converges to zero very rapidly. In both cases, however, the convergence
rate of the estimator is slower than parametric, the asymptotic variance depends on the kernel,
the plug-in variance estimator is inconsistent, and the non-parametric bootstrap fails. While
this limits the possibility of inference, we show that the problem is not impossible and
demonstrate how to construct variance estimators that are consistent in both regular and non-
regular cases. The positive results in this paper thus extend the insights of Cattaneo, Crump,
and Jansson (2014b) by providing support for under-smoothing as a robust practice even in
problems where the nuisance parameter may be highly irregular. By contrast, the negative
results we obtain under weak regularity conditions cast some light on the fundamental limits
of inference in semi-parametric problems. They indicate what happens when the high-level
conditions of Newey (1994) or Chen, Linton, and Van Keilegom (2003) break down. This
should be appreciated in virtue of the paradigmatic simplicity of average density estimation
among all semi-parametric problems. From a technical viewpoint, a core contribution of
this paper is to connect the traditional "low smoothness asymptotics" as found in Robins,
Li, Tchetgen Tchetgen, and van der Vaart (2016) with the "small bandwidth asymptotics"
introduced in Cattaneo, Crump, and Jansson (2014b) for kernel-based estimators. This is
made possible by the assumption-lean moment bounds we directly derive for the estimator.

1 Introduction

1.1 Problem and results overview

Problems of inference on low-dimensional parameters in the presence of infinite-dimensional
nuisance parameters abound in applications. When the low-dimensional parameter is expressed
as a functional of the underlying distribution and the nuisance parameter, an intuitive two-step
procedure consists in plugging a non-parametric estimator of the nuisance parameter in an empirical
counterpart to the functional defining the low-dimensional parameter. The most standard case
obtains when the low-dimensional parameter is expressed through a moment condition whose
empirical counterpart is obtained by plugging the empirical measure. This two-step procedure,
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which is alternatively known as semi-parametric plug-in estimation by re-substitution, has been
extensively studied. The resulting estimators are commonly refined by some easy-to-implement
bias-correction (with or without sample splitting). Some strong convergence results based on "high-
level" conditions are available for such estimators. In particular, for low-dimensional parameters
expressed through moment conditions, it is known that if the non-parametric estimator for the
infinite-dimensional nuisance parameter is strongly consistent at a fast enough rate, then the
estimator for the low-dimensional parameter is asymptotically linear and has a

√
𝑛-normal weak

limit independent of the non-parametric estimator; see Andrews (1994), Newey (1994), Chen,
Linton, and Van Keilegom (2003), or, more recently, Chernozhukov, Chetverikov, Demirer, Duflo,
Hansen, Newey, and Robins (2018). However, one may be worried that the non-parametric
estimator is not as good in practice as required by theory. This may happen for a number of
reasons: the true nuisance parameter may lie in too large a class due to its inherent irregularity
or to the dimension of the data; its estimator may not have been chosen carefully enough. Even
for well-behaved problems with well-performing estimators, the strong consistency rates required
in theory may be hard to reach and impossible to verify: it will often depend on a careful choice
of some hyperparameters that ultimately depends on the unknown degree of regularity of the
nuisance parameter. This justifies looking at what happens in terms of weak convergence and
inference when the consistency rates for the non-parametric first step are relaxed. This leads
to what can be labeled as non-regular semi-parametric functional estimation problems, that is,
semi-parametric problems of the form described above for which asymptotic linearity subsides and
parametric rates of convergence cannot be achieved anymore.

An encompassing theory of non-regular inference holding for all semi-parametric functional
estimation problems is inherently hard due to the paucity of general weak convergence results for
asymptotically non-linear statistics. For some problems, however, the non-linearity of the statistics
is regular enough so that one may hope to invoke some known weak convergence results. Among
them, problems where the estimator admits a U-statistics representation are good candidates for
tractable analysis. We are not the first one to make this point and explore problems of this form
(see Cattaneo, Crump, and Jansson (2014b) and Robins, Li, Tchetgen Tchetgen, and van der Vaart
(2016)), but results are still few and sparse. We contribute to this literature by providing new
non-regular convergence and inference results for estimating the expected value of a density by
an optimal plug-in kernel density estimator. This estimator and its optimal properties were first
considered by Hall and Marron (1987) and Giné and Nickl (2008a). Our new non-regular results
are of interest for at least three reasons.

1. The expected value of a density or average density, which rewrites as the integrated square
of a density under domination, is in itself an important statistical object for which valid
inferential rules have often been sought. It is the essential part of the Rényi entropy of order
2 and is used, for instance, in the estimation of the Shannon entropy (see Laurent (1996)) or
in the construction of adaptive confidence sets (see Robins and van der Vaart (2006)). The
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first appeal of our results is that they extend the range of cases where valid inference for the
average density is possible.

2. To obtain these results, we derive, in the terminology of Cattaneo, Crump, and Jansson
(2014b), the "small bandwidth asymptotics" of the optimal estimator we consider and we
do so without smoothness assumptions on the density. This allows to formally connect
this regime with the "low smoothness asymptotics" (under optimal bandwidth sequences)
traditionally considered as in Giné and Nickl (2008a) or Robins, Li, Tchetgen Tchetgen,
and van der Vaart (2016). This connection provides new insights into the choice of hyper-
parameters in two-step semi-parametric problems. Indeed, the results we obtain can be
understood as formally justifying under-smoothing as a valid practice to gain robustness for
inference even when the nuisance parameter is highly irregular.

3. However, the validity of under-smoothing depends fundamentally on tailored solutions that
leverage essential structures of the problem and estimator. In absence of these constructions,
standard inferential procedures, such as the plug-in principle for variance estimation and
the non-parametric bootstrap, break down as soon as the problem is non-regular. Because
average density estimation is one of the simplest semi-parametric problems and, as a conse-
quence, comes with known optimality frontiers and simple optimal estimators as the one we
consider, the results we obtain can be fairly interpreted as upper bounds in terms of validity
for non-regular inference in more general semi-parametric functional estimation problems.
This point is salient given the renewed interest for semi-parametric plug-in estimation by re-
substitution using sample splitting (see, for instance, Chernozhukov, Chetverikov, Demirer,
Duflo, Hansen, Newey, and Robins (2018)). One may legitimately conjecture that, at best,
similar failures as displayed in this paper obtain in non-regular regimes for more complicated
problems where optimal bias-corrected plug-in estimators are not even available.

From a purely technical viewpoint, our inferential results also contribute to the literature on
inference based on U-statistics with 𝑛-dependent kernel complementing the results obtained in
Hardle and Mammen (1993) and Cattaneo, Crump, and Jansson (2014b,a).

The rest of the paper is constructed as follows. In the remaining parts of the Introduction, we
first review previous results in the literature on which we build, then introduce the estimator and the
running hypotheses for the problem, and finally review Hoeffding’s decomposition for U-statistics.
In Section 2, we derive the weak limits of the estimator in two regimes. We first derive the weak
limits by varying the rate of convergence for the bandwidth of the kernel estimator while keeping
the smoothness class of the true density fixed to some arbitrary level. We then show that these
results can be directly used to derive the weak limits of the estimator by varying the degrees of
smoothness of the true density while fixing the bandwidth sequence to the optimal one (trading
off squared bias against variance). The conclusion is that the estimator remains asymptotically
normal when the bandwidth sequence converges to zero very rapidly even if the density is highly
irregular. In these cases, however, the rate is no longer parametric and the variance depends on the
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density estimator. Given these newly derived weak limits, we then tackle the problem of inference
in Section 3. We show that while valid inference remains possible, many standard procedures
break down in spite of asymptotic normality. By leveraging the structure of the problem, we first
build a simple variance estimator and show its consistency by constructive methods in regular
and non-regular cases. We then show that the plug-in variance estimator is inconsistent in the
non-regular cases, but that a simple bias-correction restores consistency. These results are then
used to show that the non-parametric bootstrap fails in the non-regular cases.

1.2 Previous results and related literature

The fact that the estimator we consider has a normal weak limit at the parametric rate in the
regular regime (that is, for a smooth enough density and an optimal bandwidth sequence) was
proved in Giné and Nickl (2008a). As far as we know, the existence and characterization of the
weak limits in non-regular regimes, either under low smoothness or small bandwidth, have not been
obtained before. Giné and Nickl (2008a) proved tightness for our problem under low smoothness,
but not the existence of a weak limit, nor its nature. Robins, Li, Tchetgen Tchetgen, and van der
Vaart (2016) proved a weak limit result under low smoothness but for a Fourier series estimator of
the average density (and did not consider inference). Cattaneo, Crump, and Jansson (2014b) proved
a weak limit result under small bandwidth but for a different problem in a high-regularity setting
(the density-weighted average derivative of a regression function). Cattaneo, Farrell, Jansson, and
Masini (2024) recently augmented these results by proving that the "small bandwidth asymptotics"
led to smaller higher-order approximation errors compared to the standard asymptotics framework
based on linearity. Cattaneo and Jansson (2018) considered another "small bandwidth asymptotics"
in high-regularity settings when the slower bandwidth sequences generate a non-negligible bias
effect (due to non-linearity or the presence of diagonal elements, and not smoothing "[which
their] theory is largely silent about"). Cattaneo and Jansson (2018) considered the average density
problem to illustrate their distributional results but only for pedagogical reasons as they purposefully
considered "non-optimal" estimators displaying some "nonlinearity" bias or some "leave-in" bias
(in their terminology). Their results do not apply to our setting since the estimator we consider
is already optimally de-biased by design and thus only presents an unavoidable "smoothing" bias.
Our results can thus be alternatively understood as tackling the "smoothing bias" in the case of
the average density. Finally, Cattaneo and Jansson (2022) investigated the relationship between
efficiency and bootstrap consistency for different estimators of the average density, including the
leave-one-out kernel-based one of Hall and Marron (1987) that we consider, but the authors did
not consider weak convergence in non-regular regimes (nor inference).

To prove our weak limit result in non-regular regimes, we have to bound higher moments of
the estimator we consider. We do this without making use of the smoothness of the density and so
resort to arguments that bear more resemblance to the ones used in Giné and Nickl (2008a) and
Robins, Li, Tchetgen Tchetgen, and van der Vaart (2016) than to the ones in Cattaneo, Crump,
and Jansson (2014b) where the authors resorted to previously derived moment bounds obtained
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by leveraging the high smoothness assumptions of their problem (see Remark 1.5 and Remark 2.4
for more on this point). Once the tedious moment bounds are derived in our problem, we resort
to more standard arguments. Our proof of asymptotic normality makes direct use of the central
limit theorem in de Jong (1987) and its direct extension in Eubank and Wang (1999). A similar
line of argument with a kernel-based estimator can be found in Hardle and Mammen (1993). The
same idea is used again in Cattaneo, Crump, and Jansson (2014b) for the density-weighted average
derivative of a regression function. All these results can be traced back to Hall (1984) who first
proved a central limit theorem for 𝑛-dependent kernel U-statistics when deriving the weak limit of
the integrated square error of a kernel density estimator. These central limit theorems for quadratic
forms seemingly differ from the one developed in Robins, Li, Tchetgen Tchetgen, and van der Vaart
(2016). The similarities and differences between these results are briefly explored in Remark 2.3.

Given that the non-regular weak limits we derive are new, our inference results based on them
are also new. These results, as they apply to some U-statistics with 𝑛-dependent kernels, fit in
a larger literature. However, as far as we know, very few results are available for such statistics:
we only know of the results in Hardle and Mammen (1993) and Cattaneo, Crump, and Jansson
(2014b,a). It is, however, an interesting question from the standpoint of statistical theory as
such statistics exhibit non-standard behaviors and serve as useful counterexamples to some widely
held folk results, in particular with respect to the validity of the bootstrap. Their intricacy is
not reducible to their non-linearity, but depends fundamentally on the sample size dependence
of their higher order terms. This point was duly noted in Robins, Li, Tchetgen Tchetgen, and
van der Vaart (2016) in the case of the weak limits. It also holds when it comes to inference
as U-statistics with 𝑛-dependent display non-standard patterns that were first exhibited in Hardle
and Mammen (1993). Our results confirm what was unearthed in this paper and reaffirmed in
Cattaneo, Crump, and Jansson (2014a). We complement these results by introducing a simpler
consistent variance estimator whose structure can be easily adapted to other similar problems such
as the one in Cattaneo, Crump, and Jansson (2014b). Our results also contribute to the important
problem of bootstrap validity in semi-parametric problems (see Chen, Linton, and Van Keilegom
(2003), Kosorok (2008), Cheng and Huang (2010)): our result shows that as soon as the regularity
conditions are not sufficient to deliver parametric rates, the non-parametric bootstrap fails, in spite
of asymptotic normality.

Remark 1.1. A terminological clarification is in order given the divergent nomenclatures across
fields. The class of semi-parametric procedures we consider in this paper is based on a double plug-
in strategy: first, a non-parametric estimator for the nuisance is plugged in the functional defining
the low-dimensional parameter; then, an estimator of the distribution is plugged in the functional
equation defining the low-dimensional parameter. This procedure is the most widely used for
semi-parametric inference of a low-dimensional parameter in presence of an infinite-dimensional
nuisance parameter. It has been sometimes referred to as semi-parametric M-estimation or Z-
estimation in econometrics (see Newey (1994), Chen, Linton, and Van Keilegom (2003), or Delsol
and Van Keilegom (2020)). However, this may be a source of confusion. If it is true that the
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procedure in the second stage may be seen as parametric Z-estimation, the whole procedure does
not correspond to what is commonly referred to as semi-parametric Z- or M-estimation. This
is due to the fact that the first step non-parametric estimator need not be obtained as solution
to an equation nor as solution to an optimization problem. This procedure should be contrasted
with proper semi-parametric Z- or M-estimation where both the low-dimensional estimator and
the nuisance estimator are solutions to a joint equation or a joint optimization problem; standard
examples of this procedure include semi-parametric maximum likelihood estimation and semi-
parametric least squares estimation (see Kosorok (2008) and Cheng and Huang (2010)).

1.3 Estimator and hypotheses

Let (𝑋1, . . . , 𝑋𝑛) be i.i.d. real-valued random variables with common distribution 𝑃𝑋 admitting
a square integrable density 𝑓0 with respect to the Lebesgue measure on R. The parameter of
interest is the expectation of 𝑓0(𝑋) with respect to 𝑃𝑋 and rewrites as the integrated square of 𝑓0
by domination. That is,

𝜃0 = E [ 𝑓0(𝑋)] =
∫
R
𝑓 2
0 (𝑥) 𝑑𝑥.

We consider the estimator of 𝜃0 introduced in Hall and Marron (1987) and further studied in Giné
and Nickl (2008a) given by

𝑈𝑛 =

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

1
ℎ𝑛
𝐾

(
𝑋𝑖 − 𝑋 𝑗

ℎ𝑛

)
,

where 𝐾 : R → R is a smoothing kernel with associated bandwidth ℎ𝑛. The estimator 𝑈𝑛 is
obtained by first plugging a kernel density estimator in the empirical counterpart to the moment
condition defining 𝜃0 and then removing the diagonal elements in the double sum. The estimator
𝑈𝑛 is directly seen to be a second-order U-statistics with 𝑛-dependent kernel 𝑘𝑛 given by

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) =
1
ℎ𝑛
𝐾

(
𝑋𝑖 − 𝑋 𝑗

ℎ𝑛

)
.

On top of the domination assumption on 𝑃𝑋, we reuse the standard assumptions considered in
Giné and Nickl (2008a) for the kernel function 𝐾 and the unknown true density 𝑓0. We denote these
assumptions Assumption K and Assumption D(𝑠), respectively. Fundamentally, the regularity of
the problem is controlled by assuming that 𝑓0 belongs to a Sobolev space and by varying its
smoothness parameter 𝑠 > 0: the lower the value of 𝑠, the less regular the density 𝑓0. Before
formally stating these assumptions, we introduce some standard notations. For 1 ≤ 𝑝 < ∞,
we denote by 𝐿 𝑝 = 𝐿 𝑝 (R) = 𝐿 𝑝 (R;𝜆) the space of 𝑝-integrable functions with respect to the
Lebesgue measure and endow it with the 𝑝-norm ∥𝜙∥ 𝑝𝑝 =

∫
R
𝜙(𝑥) 𝑝 𝑑𝑥. For 𝜙 ∈ 𝐿1, we define the

Fourier transform by 𝐹𝜙(𝑢) =
∫
R
𝑒−𝑖𝑢𝑥𝜙(𝑥) 𝑑𝑥 and we extend it by continuity to 𝐿2.

Assumption K. The kernel 𝐾 : R→ R satisfies:
1. 𝐾 is symmetric and bounded;

6



2.
∫
𝐾 (𝑢) 𝑑𝑢 = 1;

3.
∫
|𝐾 (𝑢) | |𝑢 | 𝑑𝑢 < ∞.

Remark 1.2. By assuming 𝐾 bounded and integrable, we have 𝐾 ∈ 𝐿1 ∩ 𝐿∞. It follows then
that 𝐾 ∈ 𝐿 𝑝 for 1 ≤ 𝑝 ≤ ∞. Indeed, given an arbitrary measure 𝜇 on a space 𝑋 , define
𝐴 = {𝑥 ∈ 𝑋 : | 𝑓 (𝑥) | > 1}, then 𝜇(𝐴) ≤

∫
𝐴
| 𝑓 (𝑥) | 𝑑𝜇 ≤ ∥ 𝑓 ∥1 and | 𝑓 (𝑥) |𝑝 ≤ | 𝑓 (𝑥) | on 𝑋 \ 𝐴,

hence
∫
𝑋
| 𝑓 (𝑥) |𝑝 𝑑𝜇 ≤

∫
𝐴
| 𝑓 (𝑥) |𝑝 𝑑𝜇 +

∫
𝑋\𝐴 | 𝑓 (𝑥) |𝑝 𝑑𝜇 ≤ ∥ 𝑓 ∥ 𝑝∞∥ 𝑓 ∥1 + ∥ 𝑓 ∥1 < ∞.

Assumption D(𝒔). The true density 𝑓0 satisfies:
1. 𝑓0 is bounded;
2. 𝑓0 ∈ 𝐻𝑠

2 , where 𝐻𝑠
2 = 𝑊2,𝑠 (R) is the Sobolev space of integrability 𝑝 = 2 and of order 𝑠,

that is,

𝐻𝑠
2 =

{
𝜙 ∈ 𝐿2 : ∥𝜙∥2,𝑠 = ∥𝐹𝜙(·) (1 + | · |2)𝑠/2∥2 < ∞

}
.

Remark 1.3. Since 𝑓0 is a density for some random variable, we implicitly assume that
∫
R
𝑓0(𝑢) 𝑑𝑢 =

1 and so 𝑓0 ∈ 𝐿1. Boundedness of 𝑓0 implies that 𝑓0 ∈ 𝐿∞. Then 𝑓0 ∈ 𝐿1 ∩ 𝐿∞, and so, by a
similar argument as Remark 1.2, we have 𝑓 ∈ 𝐿 𝑝 for any 1 ≤ 𝑝 ≤ ∞.

Remark 1.4. Note that we do not necessarily assume 𝑓0 to be continuous. In particular, 𝑓 ∈ 𝐻𝑠
2 can

be discontinuous if 𝑠 < 1/2, while the Sobolev embedding theorem ensures continuity of 𝑓 ∈ 𝐻𝑠
2

for 𝑠 ≥ 1/2. This is not an issue since continuity is not needed. However, we will make use of the
𝐿1 assumption. In particular, we will make use of 𝐿1-continuity, that is, the fact that if 𝑓 ∈ 𝐿1,
then

lim
|𝑡 |→0

∫
| 𝑓 (𝑥 + 𝑡) − 𝑓 (𝑥) | 𝑑𝑥 = 0.

Other results of the sort will be used; they are based on a density argument using the fact that
compactly supported continuous functions are dense in 𝐿1.

Remark 1.5. The smoothness and integrability assumptions in D(𝑠) are the one considered by Giné
and Nickl (2008a). Under Assumption D(𝑠), the authors showed that the bias 𝐵𝑛 := E [𝑈𝑛] − 𝜃0 of
𝑈𝑛 satisfied 𝐵𝑛 = 𝑂 (ℎ2𝑠) where 𝑠 is the smoothness parameter for the density. For completeness,
the result and its proof are reproduced in Section D of the Supplementary Material. It is important
to note, however, that we are able in Section 2 to derive the weak limit of 𝜎(𝑈𝑛)−1(𝑈𝑛 − E [𝑈𝑛])
without using the smoothness assumption in D(𝑠) but only the integrability condition 𝑓0 ∈ 𝐿∞. It
is only when looking at the centered quantity 𝜎(𝑈𝑛)−1(𝑈𝑛 − 𝜃0) that the smoothness parameter
𝑠 will play a role through the rate of decay of the bias. This has important consequences when
compared to previous results in the literature as explained in Remark 2.4 and in the introduction
of Section 3.

Remark 1.6 (On relaxing D(𝑠)). The smoothness assumption in D(𝑠) is already (much) more
general than those used in other results in the literature bearing on sensibly similar problems – see,
e.g., Hall (1984), Hall and Marron (1987), Bickel and Ritov (1988), Hardle and Mammen (1993),
or Cattaneo, Crump, and Jansson (2014b,a). It is the same smoothness assumption as considered
in Laurent (1996). It can be extended at no cost to the slightly more general class considered in
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Laurent (2005) – see Section D of the Supplementary Material. The 𝐿∞ integrability assumption
in D(𝑠) is more crucial, both for the bias and the weak limit, and it is unclear if it can be relaxed –
see Remark 2 in Giné and Nickl (2008a) for a positive answer for the bias result in the case of the
Lipschitz class of Bickel and Ritov (1988).

Remark 1.7 (On multivariate extensions). We follow Giné and Nickl (2008a) and focus on the
one-dimensional case 𝑑 = 1. This allows us to reuse their Fourier argument for handling the
bias without modification. It also greatly simplifies notations when deriving the tedious moment
bounds for the weak limits. This also allows us to work out direct arguments from which we can
unearth a simpler variance estimator than in Cattaneo, Crump, and Jansson (2014b). Extending
our results to higher dimensions 𝑑 > 1 is of interest, especially to investigate the effects of the
order of the kernel on convergence and inference. We also expect similar higher-order refinements
as exhibited in Cattaneo, Crump, and Jansson (2014b) and Cattaneo, Farrell, Jansson, and Masini
(2024) to hold in regular cases. These extensions are left for future research.

1.4 A preliminary Hoeffding decomposition

Most of the arguments we will make depend on the Hoeffding decomposition of the second-
order U-statistics𝑈𝑛. This is a well-known approach that dates back to Hoeffding (1948). Because
the decomposition will be used repeatedly, we collect in the next lemma the different terms entering
into the decomposition. It is useful to introduce the following notations

𝑢0
𝑛 = E [𝑈𝑛] = E [𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)],

𝑢1
𝑛 (𝑋𝑖) = E [𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑋𝑖]

𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) = 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗),

where 𝑖 ≠ 𝑗 are any two indexes.

Lemma 1.1 (Hoeffding Decomposition of 𝑈𝑛). The statistics 𝑈𝑛 admits the following Hoeffding
decomposition

𝑈𝑛 = E [𝑈𝑛] + 2𝐿𝑛 +𝑊𝑛 (1.1)

where
E [𝑈𝑛] = 𝑢0

𝑛,

𝐿𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

[
𝑢1
𝑛 (𝑋𝑖) − 𝑢0

𝑛

]
,

and

𝑊𝑛 =

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

[
𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) − 𝑢1

𝑛 (𝑋𝑖) − 𝑢1
𝑛 (𝑋 𝑗) + 𝑢0

𝑛

]
.

Proof. This follows from Theorem 1 in Section 1.6. in Lee (1990). In this case, the proof is
simpler. The equality follows directly by expanding the terms. The fact that 2𝐿𝑛 is a 𝐿2-projection
follows by verifying that E [(𝑈𝑛 − 2𝐿𝑛)

∑𝑛
𝑖=1 𝑔𝑖 (𝑋𝑖)] = 0. □
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Lemma 1.2 (Variance of𝑈𝑛). The variance of𝑈𝑛 is given by

Var𝑈𝑛 =
4
𝑛

Var(𝑢1
𝑛 (𝑋1)) +

2
𝑛(𝑛 − 1)Var(𝑢2

𝑛 (𝑋1, 𝑋2) − 𝑢1
𝑛 (𝑋1) − 𝑢1

𝑛 (𝑋2)).

Proof. This follows directly from Theorem 4 in Section 1.6. in Lee (1990). For completeness, we
rapidly sketch the proof. By construction, 2𝐿𝑛 and𝑊𝑛 are uncorrelated. In particular, we have

Var𝑈𝑛 = 4Var 𝐿𝑛 + Var𝑊𝑛. (1.2)

Since the components of 𝐿𝑛 are i.i.d. (as measurable functions of 𝑋𝑖), we have

Var 𝐿𝑛 =
1
𝑛

Var(𝑢1
𝑛 (𝑋1) − 𝑢0

𝑛) =
1
𝑛

Var(𝑢1
𝑛 (𝑋1)). (1.3)

Since the components of 𝑊𝑛 are uncorrelated for any four indexes 𝑖 < 𝑗 , 𝑘 < 𝑙 such that at least
three are different, we have

Var𝑊𝑛 =
2

𝑛(𝑛 − 1)Var(𝑢2
𝑛 (𝑋1, 𝑋2) − 𝑢1

𝑛 (𝑋1) − 𝑢1
𝑛 (𝑋2) + 𝑢0

𝑛)

=
2

𝑛(𝑛 − 1)Var(𝑢2
𝑛 (𝑋1, 𝑋2) − 𝑢1

𝑛 (𝑋1) − 𝑢1
𝑛 (𝑋2))

=
2

𝑛(𝑛 − 1)

[
Var(𝑢2

𝑛 (𝑋1, 𝑋2)) − 2Var(𝑢1
𝑛 (𝑋1))

]
,

(1.4)

where the last equality follows since cov(𝑢2
𝑛 (𝑋1, 𝑋2), 𝑢1

𝑛 (𝑋1)) = Var(𝑢1
𝑛 (𝑋1)) and

cov(𝑢1
𝑛 (𝑋1), 𝑢1

𝑛 (𝑋2)) = 0 (by independence of 𝑋1 and 𝑋2). □

From the proof, we get the alternative expression

Var𝑈𝑛 =
4
𝑛

Var(𝑢1
𝑛 (𝑋1)) +

2
𝑛(𝑛 − 1)

[
Var(𝑢2

𝑛 (𝑋1, 𝑋2)) − 2Var(𝑢1
𝑛 (𝑋1))

]
.

We also get the two useful inequalities

Var 𝐿𝑛 ≤ 1
𝑛
E [(𝑢1

𝑛 (𝑋1))2],

and
Var𝑊𝑛 ≤ 2

𝑛(𝑛 − 1)Var(𝑢2
𝑛 (𝑋1, 𝑋2)) ≤

2
𝑛(𝑛 − 1)E [(𝑢

2
𝑛 (𝑋1, 𝑋2))2] .

2 Non-regular weak limits

2.1 Varying bandwidth rates with fixed smoothness

In this section, we derive the weak limits of the estimator𝑈𝑛 for different convergence rates of
the bandwidth sequence ℎ𝑛 to 0 as 𝑛 → ∞ while keeping the smoothness of the density fixed to
some arbitrary level 𝑠 > 0. This translates into the following assumptions:
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1. Assumption K;

2. Assumption D(𝑠) for 𝑠 > 0;

3. we do not fix ℎ𝑛 but only suppose that 0 < ℎ𝑛 → 0 as 𝑛→ ∞.

Under these assumptions, we show in Corollary 2.3 that whenever:

• 𝑛ℎ𝑛 → ∞: the linear term dominates and we have a standard central limit theorem with
variance the semi-parametric lower bound;

• 𝑛ℎ𝑛 → (0,∞): the linear term and the second-order term have the same order and the weak
limit is still normal at the standard 𝑛1/2 rate but the asymptotic variance depends on the
kernel;

• 𝑛ℎ𝑛 → 0: the quadratic term dominates and the weak limit is still normal but depends on the
kernel and convergence happens at a slower rate than 𝑛1/2 which depends on the bandwidth
sequence.

This result corresponds to the "small bandwidth asymptotics" of the estimator 𝑈𝑛 if we reuse the
terminology coined in Cattaneo, Crump, and Jansson (2014b). The authors of this paper derived
qualitatively similar results for a different problem based on a weighted regression estimator that
leveraged strong regularity conditions1. The weak limit in our paper can be derived independently
of the smoothness level 𝑠 > 0. This is possible due to the delicate moment bounds for 𝑈𝑛 we
derive and gather in Lemma 2.3, Lemma 2.4, and Lemma 2.5. This difference has important
consequences that are leveraged in Subsection 2.2 and Section 3.

Before leveraging this difference, we have to prove Corollary 2.3. The proof is split into three
parts. We start by characterizing the asymptotic variance of 𝑈𝑛 in Lemma 2.1 and Lemma 2.2
(which will be needed to obtain a closed form for the weak limit). We then derive bounds for the
moments of 𝑈𝑛. We finally use these bounds to verify the conditions of the central limit theorem
for generalized quadratic forms of de Jong (1987). A similar strategy was used in Cattaneo, Crump,
and Jansson (2014b) and before in Hardle and Mammen (1993). This strategy, including the central
limit theorem of de Jong (1987), can be directly traced back to Hall (1984) – see Remark 2.3 for
more on this point.

Lemma 2.1.

lim
𝑛→∞

𝑛Var 𝐿𝑛 =

∫
R
𝑓0(𝑥)3 𝑑𝑥 −

( ∫
R
𝑓0(𝑥)2 𝑑𝑥

)2
.

Proof. For simplicity, we write ℎ𝑛 = ℎ. From Equation (1.3), we have

𝑛Var 𝐿𝑛 = E [(𝑢1
𝑛 (𝑋1))2] − E [𝑢1

𝑛 (𝑋1)]2.

1Cattaneo, Crump, and Jansson (2014b) resorted to moment bounds proved in Robinson (1995) and Nishiyama and
Robinson (2000) under strong regularity conditions due to the nature of their problem.
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We first have

E [(𝑢1
𝑛 (𝑋1))2] =

∫
R

( ∫
R
𝐾ℎ (𝑥 − 𝑦) 𝑓0(𝑦) 𝑑𝑦

)2
𝑓0(𝑥) 𝑑𝑥

=

∫
R

( ∫
R
𝐾ℎ (𝑢) 𝑓0(𝑥 − 𝑢) 𝑑𝑢

)2
𝑓0(𝑥) 𝑑𝑥.

Since 𝐾 ∈ 𝐿1 and 𝑓0 ∈ 𝐿2, we have by the mollification theorem (see Theorem 8.14. in Folland
(1999)) that

∫
R
𝐾ℎ (𝑢) 𝑓0(𝑥 − 𝑢) 𝑑𝑢 converges in 𝐿2 to 𝑓0 as ℎ → 0. That is,

lim
ℎ→0

∫
R

( ∫
R
𝐾ℎ (𝑢) 𝑓0(𝑥 − 𝑢) 𝑑𝑢 − 𝑓0(𝑥)

)2
𝑓0(𝑥) 𝑑𝑥 = 0.

Then, by continuity of the norm, we directly get that

lim
ℎ→0

∫
R

( ∫
R
𝐾ℎ (𝑢) 𝑓0(𝑥 − 𝑢) 𝑑𝑢

)2
𝑓0(𝑥) 𝑑𝑥 =

∫
R
𝑓0(𝑥)3 𝑑𝑥.

For the limit ofE [(𝑢1
𝑛 (𝑋1))]2, we can directly invoke a density argument that extends 𝐿1-continuity.

It is proved in Section B of the Supplementary Material. We first have

E [(𝑢1
𝑛 (𝑋1))] =

∫
R

∫
R
𝐾ℎ (𝑥 − 𝑦) 𝑓0(𝑦) 𝑑𝑦 𝑓0(𝑥) 𝑑𝑥

=

∫
R

∫
R
𝐾 (𝑢) 𝑓0(𝑥 − 𝑢ℎ) 𝑑𝑢 𝑓0(𝑥) 𝑑𝑥

=

∫
R
𝐾 (𝑢)

∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢.

(2.1)

Then, as proved in Section B of the Supplementary Material, we have

lim
ℎ→0

∫
R
| 𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥) − 𝑓0(𝑥)2 | 𝑑𝑥 = 0.

Then, by dominated convergence, we have

lim
ℎ→0

∫
R
𝐾 (𝑢)

∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢 =

∫
R
𝐾 (𝑢)

∫
R
𝑓0(𝑥)2 𝑑𝑥 𝑑𝑢

=

∫
R
𝑓0(𝑥)2 𝑑𝑥.

This concludes the proof by composition of limits. □

Remark 2.1. This result was already proved in Theorem 1 in Giné and Nickl (2008a). The proof
of Giné and Nickl (which is reproduced in Cattaneo and Jansson (2022)) is based on showing
mean squared convergence of 𝐿𝑛 towards a i.i.d. sum with 𝑌𝑖 = 𝑓0(𝑋𝑖) −

∫
R
𝑓0(𝑥)2 𝑑𝑥 and then

obtaining convergence in variance from the triangular inequality and continuity of the norm. The
proof above is more direct and is provided because it is based on an argument that will used
repeatedly in this paper. The proof is based on a density argument: the result would be direct
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if 𝑓0 was continuous and compactly supported, but we did not assume continuity nor compact
support; however, functions in 𝐿1 are "approximately" such in the sense that continuous compactly
supported functions are dense in 𝐿1. This is this approximation that is used in proving the result in
Section B of the Supplementary Material as well as the mollification theorem and 𝐿1-continuity.

Lemma 2.2.
lim
𝑛→∞

(
𝑛

2

)
ℎ𝑛Var𝑊𝑛 =

∫
R
𝑓0(𝑥)2 𝑑𝑥

∫
R
𝐾 (𝑢)2 𝑑𝑢.

Proof. For simplicity, we write ℎ𝑛 = ℎ. From Equation (1.4), we have(
𝑛

2

)
Var𝑊𝑛 = Var(𝑢2

𝑛 (𝑋1, 𝑋2)) − 2Var(𝑢1
𝑛 (𝑋1)).

From the proof of Lemma 2.1, we know that Var(𝑢1
𝑛 (𝑋1)) = 𝑂 (1) = 𝑜(ℎ−1) and E [𝑢2

𝑛 (𝑋1,

𝑋2)]2 = E [𝑢1
𝑛 (𝑋1)]2 = 𝑂 (1) = 𝑜(ℎ−1). It remains to handle E [(𝑢2

𝑛 (𝑋1, 𝑋2))2]. We have

ℎE [(𝑢2
𝑛 (𝑋1, 𝑋2))2] = ℎ

∫
R

∫
R
(𝐾ℎ (𝑥 − 𝑦))2 𝑓0(𝑦) 𝑑𝑦 𝑓0(𝑥) 𝑑𝑥

= ℎ

∫
R

∫
R

1
ℎ
𝐾 (𝑢)2 𝑓0(𝑥 − 𝑢ℎ) 𝑑𝑢 𝑓0(𝑥) 𝑑𝑥

=

∫
R
𝐾 (𝑢)2

∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢

As in Equation (2.1), we can conclude by using the result proved in Section B of the Supplementary
Material and dominated convergence that

lim
ℎ→0

∫
R
𝐾 (𝑢)2

∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢 =

∫
R
𝑓0(𝑥)2 𝑑𝑥

∫
R
𝐾 (𝑢)2 𝑑𝑢.

□

From this results, it follows directly that Var(
√
𝑛𝐿𝑛) = 𝑂 (1) and Var(

√
𝑛𝑊𝑛) = 𝑂 ((𝑛ℎ𝑛)−1),

so that the dominating terms in the Hoeffding decomposition depends on lim𝑛→∞ 𝑛ℎ𝑛. To obtain
the weak limit, we have to be more precise and bound higher moments of 𝐿𝑛 and 𝑊𝑛. This is the
objective of Lemma 2.3, Lemma 2.4, and Lemma 2.5 which are proved in Section A.1. of the
Supplementary Material. The proofs make use of a recurring density argument that is stated and
proved in Section B of the Supplementary Material. This argument is similar to the one used to
prove Lemma 2.1 and Lemma 2.2.

Lemma 2.3. Let 𝑖, 𝑗 , 𝑘 ∈ {1, 2 . . . , 𝑛} with 𝑖 ≠ 𝑗 ≠ 𝑘 . Let 𝑞, 𝑟 ≥ 1 be integers. Then
1.

E [|𝑢1
𝑛 (𝑋𝑖) |𝑞] = 𝑂 (1);

2.
E [|𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑞] = 𝑂 (ℎ−𝑞+1);
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3.
E [|𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑢1
𝑛 (𝑋𝑖) |𝑞] = 𝑂 (ℎ−𝑟+1/2);

4.
E [|𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑢2
𝑛 (𝑋𝑖 , 𝑋𝑘) |𝑞] = 𝑂 (ℎ−𝑟−𝑞+2);

Lemma 2.4. Let 𝐶𝑛
2 denote the set of all pairs (𝑖, 𝑗) with 𝑖 < 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛. For (𝑖, 𝑗) ∈ 𝐶𝑛

2 ,
let 𝑟𝑖, 𝑗 ≥ 0 be non-negative integers. For 𝑘 ∈ {1, 2, . . . , 𝑛}, let 𝑠𝑘 ≥ 0 be non-negative integers.
Suppose 𝑟𝑖, 𝑗 ≥ 1 for at least one pair (𝑖, 𝑗) ∈ 𝐶𝑛

2 . Suppose that 𝑠𝑘 ≥ 1 for at least one index
𝑘 ∈ {1, 2, . . . , 𝑛}. Consider the product Π(𝑖, 𝑗 ) ∈𝐶𝑛

2
(𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗))𝑟𝑖, 𝑗 . Denote 𝑙 ∈ {1, 2, . . . , 𝑛} the
number of indexes 𝑖 such that 𝑟𝑖, 𝑗 ≠ 0 for at least one index 𝑗 ∈ {1, 2, . . . , 𝑖 − 1, 𝑖 + 1, . . . , 𝑛}. Then

5.
E [Π(𝑖, 𝑗 ) ∈𝐶𝑛

2
|𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟𝑖, 𝑗 ] = 𝑂 (ℎ−
∑

(𝑖, 𝑗) 𝑟𝑖, 𝑗+𝑙−1);

6.
E [Π(𝑖, 𝑗 ) ∈𝐶𝑛

2
|𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟𝑖, 𝑗Π𝑛
𝑘=1 |𝑢

1
𝑛 (𝑋𝑘) |𝑠𝑘 ] = 𝑂 (ℎ−

∑
(𝑖, 𝑗) 𝑟𝑖, 𝑗+ 𝑙−1

2 );

By using two nested density arguments, result (3.) and (6.) of last lemmas can probably be
improved to 𝑂 ( |ℎ|−𝑟+1) and 𝑂 (ℎ−

∑
(𝑖, 𝑗) 𝑟𝑖, 𝑗+𝑙−1), respectively, but the result is not needed to prove

the main result of this section and so we only resort to a cruder bound based on Holder’s inequality.
As shown in next lemma, the price to pay is a cruder and more cumbersome bound for the higher
moments of𝑊𝑛, which remains nevertheless sufficient for our purpose.

Lemma 2.5. Define

𝑙 (𝑋𝑖) = 𝑢1
𝑛 (𝑋𝑖) − 𝑢0

𝑛,

𝑤(𝑋𝑖 , 𝑋 𝑗) = 𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) − 𝑢1

𝑛 (𝑋𝑖) − 𝑢1
𝑛 (𝑋 𝑗) + 𝑢0

𝑛

for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 . Let 𝑖, 𝑗 , 𝑘 ∈ {1, 2 . . . , 𝑛} with 𝑖 ≠ 𝑗 ≠ 𝑘 . Let 𝑞, 𝑟 ≥ 1 be integers. Then
1.

E [|𝑙 (𝑋𝑖) |𝑞] = 𝑂 (1);

2.
E [|𝑤(𝑋𝑖 , 𝑋 𝑗) |𝑞] = 𝑂 (ℎ−𝑞+1);

3.
E [|𝑤(𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑤(𝑋𝑖 , 𝑋𝑘) |𝑞] = 𝑂 (ℎ−𝑟−𝑞+2);

4.
E [Π(𝑖, 𝑗 ) ∈𝐶𝑛

2
|𝑤(𝑋𝑖 , 𝑋 𝑗) |𝑟𝑖, 𝑗 ] = 𝑂 (ℎ−

∑
(𝑖, 𝑗) 𝑟𝑖, 𝑗+ 𝑙+1

2 ∨ ℎ−
∑

(𝑖, 𝑗) 𝑟𝑖, 𝑗+𝑙−1);

where the 𝐶𝑛
2 and 𝑙 are defined as in Lemma 2.4 for 𝑤 instead of 𝑢2

𝑛.

We are now ready to state the main result of this section, a central limit theorem for the
vector with elements properly standardized terms 𝐿𝑛 and 𝑊𝑛, from which the weak limit of
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(Var𝑈𝑛)−1/2(𝑈𝑛 − E [𝑈𝑛]) can be directly derived. The proof is relegated to Section A.2. of the
Supplementary Material. The idea is to use the previously derived moment bounds to apply the
central limit theorem for quadratic forms of de Jong (1987).

Proposition 2.1. If 𝑛2ℎ𝑛 → ∞, then the terms 𝐿𝑛 and 𝑊𝑛 in the Hoeffding decomposition (1.1)
converges jointly in distribution to a bivariate normal distribution

©­«
√
𝑛𝐿𝑛√︃(𝑛

2
)
ℎ𝑛𝑊𝑛

ª®¬⇝ N
[(

0
0

)
,

(
𝜎2
𝐿

0
0 𝜎2

𝑊

)]
where

𝜎2
𝐿 =

∫
R
𝑓0(𝑥)3 𝑑𝑥 −

( ∫
R
𝑓0(𝑥)2 𝑑𝑥

)2
,

𝜎2
𝑊 =

∫
R
𝑓0(𝑥)2 𝑑𝑥

∫
R
𝐾 (𝑢)2 𝑑𝑢.

From the Hoeffding decomposition for𝑈𝑛, Lemma 2.1, and Lemma 2.2, we can directly derive
the weak limit of (Var𝑈𝑛)−1/2(𝑈𝑛 − E [𝑈𝑛]) from the previous result. The proof can be found in
Section A.2. of the Supplementary Material.

Corollary 2.2. If 𝑛2ℎ𝑛 → ∞, then

(Var𝑈𝑛)−1/2(𝑈𝑛 − E [𝑈𝑛]) ⇝ 𝑁 (0, 1).

We can now make use of the bias result in Giné and Nickl (2008a) (see Section D of the
Supplementary Material) to obtain the weak limits of (Var𝑈𝑛)−1/2(𝑈𝑛−𝜃0). The proof is relegated
to Section A.2. of the Supplementary Material.

Corollary 2.3. 1. If 𝑛ℎ𝑛 → ∞ and 𝑛ℎ4𝑠
𝑛 → 0, then

√
𝑛(𝑈𝑛 − 𝜃0) ⇝ 𝑁 (0, 4𝜎2

𝐿).

2. If 𝑛ℎ𝑛 → 𝐶 ∈ (0,∞) and 𝑛ℎ4𝑠
𝑛 → 0, then

√
𝑛(𝑈𝑛 − 𝜃0) ⇝ 𝑁

(
0, 4𝜎2

𝐿 + 2
𝐶
𝜎2
𝑊

)
.

3. If 𝑛2ℎ𝑛 → ∞, 𝑛ℎ𝑛 → 0, and 𝑛ℎ2𝑠+ 1
2

𝑛 → 0, then√︄(
𝑛

2

)
ℎ𝑛 (𝑈𝑛 − 𝜃0) ⇝ 𝑁 (0, 𝜎2

𝑊 ).

Remark 2.2. Note that conditions in (1.) and (2.) can only hold if 𝑠 > 1/4. Note that the last two
conditions in (3.) have the following relation: if 𝑠 > 1/4, then 𝑛ℎ𝑛 → 0 implies 𝑛ℎ2𝑠+ 1

2
𝑛 → 0; if

𝑠 < 1/4, then 𝑛ℎ2𝑠+ 1
2

𝑛 → 0 implies 𝑛ℎ𝑛 → 0. For (2.), it would be of interest to relax the conditions
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to 𝑛ℎ4𝑠
𝑛 → 𝐶′ ∈ (0,∞), but it is not clear if such a result holds: the bias result of Giné and Nickl

(2008a) only gives 𝐵𝑛 = 𝑂 (ℎ2𝑠) (see Section D of the Supplementary Material).

Remark 2.3. (About some CLTs for U-statistics with 𝑛-dependent kernel) In terms of weak conver-
gence, the fundamental result we use is the central limit theorem in de Jong (1987) for generalized
quadratic forms so as to handle the quadratic term in the Hoeffding decomposition of the U-
statistics with 𝑛-dependent kernel. The result of Eubank and Wang (1999) is a direct extension of
de Jong (1987) to handle the case where both the linear and the quadratic terms are of the same
order. The result in de Jong (1987) is an extension of the result in Hall (1984), which itself bear
similarities to Beran (1972) and Whittle (1964). These results are proved using either a martingale
CLT or a Lyapunov CLT. The central limit theorem proved in Robins, Li, Tchetgen Tchetgen, and
van der Vaart (2016), which makes use of a Lyapunov condition, bears important similarities to
these results. It would be interesting to clarify the connections between them, if possible.

Remark 2.4. The weak convergence result of Corollary 2.2 does not make use of the smoothness
degree 𝑠 > 0 but only of the integrability assumption 𝑓0 ∈ 𝐿1 ∩ 𝐿∞. It is only when the bias enters
the scene that smoothness plays a role as stated in Corollary 2.3. This should be contrasted with the
results obtained in Cattaneo, Crump, and Jansson (2014b) for a different kernel-based estimator.
For their problem, the moments bounds they borrow from Robinson (1995) and Nishiyama and
Robinson (2000) make direct use of strong smoothness assumptions. As a consequence, the weak
limit results obtained in Cattaneo, Crump, and Jansson (2014b) depend crucially on the smoothness
of the nuisance parameter, even for the quantity (Var 𝜃𝑛)−1/2(𝜃𝑛 − E [𝜃𝑛]) using their notation.
This is not the case in our problem as given by Corollary 2.2. This has important consequences that
are explored in the following sections. It allows us first to equivalently state the "small bandwidth"
weak limit as a "low smoothness" weak limit for an optimal bandwidth sequence in the spirit of
Giné and Nickl (2008a) and Robins, Li, Tchetgen Tchetgen, and van der Vaart (2016): this is the
object of Corollary 2.4 proved in the next subsection. It has also important consequences in terms
of non-regular cases for which inference can be considered – see the introduction of Section 3.

2.2 Varying smoothness with optimal bandwidth sequence

In this section, we leverage the fact that not only Corollary 2.3 holds but also the more primitive
result Corollary 2.2. This result is possible only due to the assumption-lean bounds we derived in
the previous section. It allows us to directly derive the weak limits of𝑈𝑛 under another asymptotic
regime that is more traditional in the statistical literature. This asymptotic regime, which is for
instance considered in Giné and Nickl (2008a) or Robins, Li, Tchetgen Tchetgen, and van der Vaart
(2016), consists in varying the class of the nuisance parameter, here the degree of smoothness 𝑠 of
the density, while fixing the bandwidth sequence ℎ𝑛 to the optimal one (in the sense of trading off
bias and variance). In this section, we thus reuse the assumptions:

1. Assumption K;

2. Assumption D(𝑠) for 𝑠 > 0;
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but we now fix the bandwidth sequence to the optimal one, which leads to the following assumption:

Assumption OB. Given Assumption D(𝑠) for 𝑠 > 0, the bandwidth sequence ℎ𝑛 satisfies

0 < ℎ𝑛 = 𝐶𝑛−
2

4𝑠+1 .

for some constant 𝐶 > 0.

By directly using Corollary 2.2, we can extend the results in Giné and Nickl (2008a) and show
that the estimator𝑈𝑛 remains asymptotically normal even when the density becomes very irregular
as captured by 𝑠 ≤ 1/4. This leads to the results in Corollary 2.4 which is proved in Section A.2.
of the Supplementary Material.

Corollary 2.4. 1. If 𝑠 > 1/4, then

√
𝑛(𝑈𝑛 − 𝜃0) ⇝ 𝑁 (0, 4𝜎2

𝐿).

2. If 𝑠 = 1/4, then
√
𝑛(𝑈𝑛 − E [𝑈𝑛]) ⇝ 𝑁

(
0, 4𝜎2

𝐿 + 2
𝐶
𝜎2
𝑊

)
.

3. If 𝑠 < 1/4, then √︄(
𝑛

2

)
ℎ𝑛 (𝑈𝑛 − E [𝑈𝑛]) ⇝ 𝑁 (0, 𝜎2

𝑊 ).

Remark 2.5. Under Assumption OB, the bias is negligible when 𝑠 > 1/4, and so the weak limit can
be centered at 𝜃0 in this case. When 𝑠 ≤ 1/4, the estimator is not necessarily unbiased, since then
we only have

√
𝑛𝐵𝑛 = 𝑂 (1) and

√︃(𝑛
2
)
ℎ𝑛𝐵𝑛 = 𝑂 (1) by the bias result in Giné and Nickl (2008a)

(see Section D of the Supplementary Material). The asymptotic negligibility of the bias when
𝑠 ≤ 1/4 can be obtained from Corollary 2.2 by changing the bandwidth sequence in Assumption
OB to a sub-optimal under-smoothed one. This is made explicit and leveraged in next section when
inference is considered.

This result is of particular interest for two main reasons. First, it directly extends the weak limit
results in Giné and Nickl (2008a) to the non-regular setting 𝑠 ≤ 1/4. Secondly, it connects the
"small bandwidth asymptotics" of Cattaneo, Crump, and Jansson (2014b) to the results in Robins
and van der Vaart (2006). The authors of this latter paper used a different method of proof to
obtain a similar result as the one above but for a different estimator of the average density based on
Fourier series. Our result makes the connection between their result and the results in Cattaneo,
Crump, and Jansson (2014b) explicit, hence bridging a gap whose existence was highlighted in
Robins, Li, Tchetgen Tchetgen, and van der Vaart (2016). This also provides additional light on
the small bandwidth asymptotic regime introduced in Cattaneo, Crump, and Jansson (2014b). It
shows in particular that the small bandwidth result of Corollary 2.2 is more fundamental than the
"low smoothness" result above.
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Remark 2.6. In practice, the smoothness parameter 𝑠 is unknown. In this case, it may be estimated
from the data to construct an (approximately) optimal bandwidth sequence. But this problem is
generally difficult. For estimation, there exists a leaner data-driven procedure using an extension of
Lepski’s method as in Section 4 in Giné and Nickl (2008a) leading to optimal adaptive rates (with
the standard logarithmic cost for the lower regularity cases as in Efromovich and Low (1996)).
Inference could then be based on this adaptive estimator. However, given the known limits to
adaptive inference (see Low (1997)), we should not expect too many positive results for valid
inference when using adaptive estimators. A full investigation of this problem is left for future
research. As a second best, we assume the smoothness class to be partially known so as to guarantee
asymptotic negligibility of the bias and show that it is then possible to perform inference in the
resulting non-regular cases. Solutions to this problem are explored in next section.

3 Non-regular inference: Gaussian approximation and bootstrap

Given the newly derived weak limits for 𝑈𝑛, there is hope to extend the range of cases for
which valid inferential rules exist. Indeed, asymptotic normality can now be used not only when
𝑛ℎ𝑛 → ∞ but also when 𝑛ℎ𝑛 → 0 provided 𝑛2ℎ𝑛 → ∞. For the limit in Corollary 2.2 to be used for
inference, however, we first need to ensure asymptotic negligibility of the bias (see Remark 2.6).
From Remark 2.5, this is seen to hold under two different sets of conditions compatible with
𝑛2ℎ𝑛 → ∞, namely

Assumption NB1. Assumption D(𝑠) holds with 𝑠 > 1/4 and the bandwidth sequence satisfies
𝑛ℎ4𝑠

𝑛 → 0; or

Assumption NB2. Assumption D(𝑠) holds with 𝑠 ≤ 1/4 and the bandwidth sequence satisfies
𝑛ℎ

2𝑠+ 1
2

𝑛 → 0.

We can then consider using result 3 in Corollary 2.3 for inference under two new sets of non-regular
cases corresponding to Assumption NB1 and Assumption NB2, respectively:

(A) the density is regular enough (𝑠 > 1/4) and the estimator belongs to a wide class of under-
smoothed estimators (with bandwidths from 𝑛ℎ𝑛 → 0 to 𝑛2ℎ𝑛 → ∞);

(B) the density is highly irregular (𝑠 ≤ 1/4) and the estimator belongs to a slightly narrower
class of under-smoothed estimators (with bandwidths from 𝑛ℎ

2𝑠+ 1
2

𝑛 → 0 to 𝑛2ℎ𝑛 → ∞).

For these two cases, the result 3 in Corollary 2.3 can be used since 𝑛ℎ𝑛 → 0 and 𝑛ℎ2𝑠+ 1
2

𝑛 → 0
hold. Because Assumption NB1 is compatible with results 1 and 2 of Corollary 2.3 (when
𝑛ℎ𝑛 → 𝐶 ∈ (0, +∞]) while Assumption NB2 is not (see Remark 2.5), we should work under
Assumption NB1 in the rest of this section. It is important to note, however, that all the results we
derive in this section for the non-regular cases (A) under Assumption NB1 (that is, when 𝑛ℎ𝑛 → 0)
hold equivalently for the non-regular cases (B) under NB2.

We then show in this section that:
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• whenever 𝑛ℎ𝑛 → 0, the plug-in variance estimator is not consistent and the non-parametric
bootstrap fails, so they cannot be used for inference in the non-regular cases (A) and (B);

• however, it is possible to construct consistent variance estimators so that valid inference can
be performed in the non-regular cases (A) and (B) using result 3 of Corollary 2.3; moreover,
these estimators remain consistent when the conditions for results 1 or 2 hold, hence allowing
some form of robustness under Assumption NB1.

We will start by constructing a simple leave-one-out estimator and showing its consistency in
regular and non-regular cases (Proposition 3.1). We will then prove the inconsistency of the
plug-in variance estimator in non-regular cases and show that consistency can be restored by
appropriate bias-correction (Proposition 3.2 and Proposition 3.3). We will derive the failure of the
non-parametric bootstrap under non-regular cases (Proposition 3.4).

These results in this section can then be used to inform practice. Even without perfect knowledge
of the regularity of the density, it is possible to hedge one’s decision by under-smoothing more
than less. In particular, when the density is not supposed to be so regular, it is still possible to
perform valid inference under a decently wide range of under-smoothed bandwidth sequences if
one uses the variance estimators we construct in this section. However, one has to be careful since
not all inferential solutions that commonly hold in regular cases can used then. These results can
also be seen as a formal way to justify under-smoothing as a decently robust practice for inference
provided it is combined with robust problem-specific inferential solutions.

Remark 3.1. The results in this section are new but they share some fundamental features with
the few results previously obtained for inference with U-statistics with 𝑛-dependent kernels. It
is interesting to note, first, that Robins, Li, Tchetgen Tchetgen, and van der Vaart (2016) did not
consider the problem of inference. As far as we know, only Hardle and Mammen (1993) and
Cattaneo, Crump, and Jansson (2014b,a) directly considered the problem and derived qualitatively
similar solutions as ours. The novelty of our results come from our capacity to handle non-regular
cases emerging not only from very small bandwidth sequences but also from non-regularity of
the nuisance parameter. This follows from our assumption-lean moment bounds as highlighted
in Remark 2.4. In a sense, the results in Hardle and Mammen (1993) and Cattaneo, Crump,
and Jansson (2014b,a) do not have counterparts to Assumption NB2 and have to work under an
assumption that bears ressemblance to Assumption NB1. Compared to Cattaneo, Crump, and
Jansson (2014b,a), by working in the one-dimensional case, we are also able to construct a simpler
variance estimator (that could be adapted to their problem).

Remark 3.2. From the standpoint of statistical theory, it is interesting to note that U-statistics
with 𝑛-dependent kernels lead to inferential results quite different than for U-statistics with non-
dependent kernels. This is a direct outcome of the weak results that obtain for such statistics. In
particular, normality under the quadratic term dominating, which does not obtain for second-order
U-statistics with non-dependent kernel, allows for solutions valid independently of whether the
linear term or the quadratic term dominates. We believe this point has not been appreciated enough
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in the literature. As far as we know, Cattaneo, Crump, and Jansson (2014b,a) are the first ones to
implicitly unearth such a feature and should be credited for it.

Remark 3.3. As traditionally done in statistics and econometrics for problems of the type we
consider, inference is performed under asymptotic negligibility of the bias. We could relax the
conditions for the bias to be of the same order as the standard deviation. In this case, valid inferential
solutions should also exist, either by bootstrapping the debiased estimate and properly correcting
as in Calonico, Cattaneo, and Farrell (2018) or by prepivoting as in Cavaliere, Gonçalves, Nielsen,
and Zanelli (2024). The characterization of these solutions are left for future research. They are
of interest given the paucity of inferential results for U-statistics with 𝑛-dependent kernels. If one
wants to completely drop the assumption that the bias is asymptotically negligible, then data-driven
methods could theoretically be considered where the choice of 𝑠 is informed by the data. However,
there exist fundamental limits to the validity of inference based on these methods as highlighted
in Remark 2.6. The solutions in this paper work as a second-best in the sense that approximate
knowledge of 𝑠 combined with under-smoothing delivers valid inferential results if the variance
estimator we construct is used, even when the exact unknown smoothness degree satisfies 𝑠 ≤ 1/4.

3.1 A simple consistent leave-one-out variance estimator

The objective of this subsection is to build from scratch the simplest estimator of Var𝑈𝑛 that
would be consistent across a wide range of bandwidth sequences so that the Gaussian approximation
in Corollary 2.3 can be used to perform (asymptotically valid) inference. The range of bandwidth
sequences would cover the non-regular cases (A) and (B) where the quadratic term dominates
corresponding to high under-smoothing regimes and low smoothness regimes. The idea behind
the estimator in this section is similar to the one used to build a consistent variance estimator in
Cattaneo, Crump, and Jansson (2014b). The construction and the proof here are more direct as
we directly unpack all elements that could be plugged-in, hence leading to a simpler estimator that
could be adapted to their problem. The cost of this simpler estimator is a more complicated proof.

Based on Equation (1.3), Equation (1.4), and the results in Lemma 2.1 and Lemma 2.2, it is
natural to consider the estimators

𝜎2
𝐿
=𝑛−1

𝑛∑︁
𝑖=1

(
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=1
𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)

−
((
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
)2

and

𝜎2
𝑊

= ℎ𝑛

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2.
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Then, based on Equation (1.2), it is natural to consider the estimator of Var𝑈𝑛 given by

𝑉𝑛 = 4𝑛−1𝜎2
𝐿
+

(
𝑛

2

)−1
ℎ−1
𝑛 𝜎2

𝑊
.

We show that this estimator is consistent for the asymptotic variance. Given the characterization
of Var𝑈𝑛

Var𝑈𝑛 = 4𝑛−1
(
𝜎2
𝐿 + 𝑜(1)

)
+

(
𝑛

2

)−1
ℎ−1
𝑛

(
𝜎2
𝑊 + 𝑜(1)

)
,

the proof of the consistency of 𝑉𝑛 follows directly from the lemma stated below. The proof of this
lemma is long and is relegated to Section A.3. of the Supplementary Material.

Lemma 3.1. If 𝑛2ℎ𝑛 → ∞, then:
1.

𝜎2
𝐿
= 𝜎2

𝐿 + 𝑜𝑃 (1);

2.
𝜎2
𝑊

= 𝜎2
𝑊 + 𝑜𝑃 (1).

Proposition 3.1. If 𝑛2ℎ𝑛 → ∞, then

𝑉
−1/2
𝑛 (𝑈𝑛 − 𝜃0) ⇝ 𝑁 (0, 1)

with

𝑉𝑛 = 4𝑛−1𝜎2
𝐿
+

(
𝑛

2

)−1
ℎ−1
𝑛 𝜎2

𝑊
.

Proof. This follows directly from Lemma 3.1, the characterization of Var𝑈𝑛 in Equation (A.1),
and an application of Slutsky’s theorem in Corollary 2.3. □

Remark 3.4. The form of 𝜎2
𝐿

stems from the moment characterization

𝑛Var 𝐿𝑛 = E [𝑢1
𝑛 (𝑋1)2] − E [𝑢1

𝑛 (𝑋1)]2.

The first term in the estimator 𝜎2
𝐿

is then a leave-one-out bias-corrected estimator of the plug-in
estimator for E [𝑢𝑛 (𝑋1)2]. Indeed, we have that

𝑛−1
𝑛∑︁
𝑖=1

(
(𝑛 − 1)−1

𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 ,𝑋 𝑗)
)2

= 𝑛−1
𝑛∑︁
𝑖=1

(𝑛 − 1)−2
𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2

+ 2𝑛−1
𝑛∑︁
𝑖=1

(𝑛 − 1)−2
𝑛−1∑︁
𝑗=1
𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘).

The first term is the one contributing to 𝜎2
𝑊

under 𝑛ℎ𝑛 → 0, while the second term is the
one contributing to 𝜎2

𝐿
under 𝑛ℎ𝑛 → ∞. This justifies the form of the first term in 𝜎2

𝐿
. For
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completeness, we show that the first term

�𝜎2
𝐿𝑊

= 𝑛−1
𝑛∑︁
𝑖=1

(𝑛 − 1)−2
𝑛∑︁

𝑗=1 𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2

is the one contributing to 𝜎2
𝑊

when 𝑛ℎ𝑛 → 0. To see this, note that E [𝑛−1 ∑𝑛
𝑖=1(𝑛 −

1)−2 ∑𝑛
𝑗=1 𝑗≠𝑖 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2] = (𝑛 − 1)−1E [𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2]. Then

E

[���𝑛ℎ𝑛𝑛−1
𝑛∑︁
𝑖=1

(𝑛 − 1)−2
𝑛∑︁

𝑗=1, 𝑗≠𝑖
𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 − 𝑛ℎ𝑛 (𝑛 − 1)−1E [𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2]

���2]
= ℎ2

𝑛𝑛
2(𝑛 − 1)−2Var

((
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2
)

= 𝑂 (𝑛−2ℎ−1
𝑛 + 𝑛−1),

where the last equality follows from the bounds derived in Section C of the Supplementary Material.
We conclude by 𝐿2-convergence that

𝑛ℎ𝑛𝑛
−1

𝑛∑︁
𝑖=1

(𝑛 − 1)−2
𝑛∑︁

𝑗=1 𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 = 𝜎2
𝑊 + 𝑜𝑃 (1).

3.2 Inconsistency of the plug-in variance estimator

We show in this subsection that the plug-in variance estimator is inconsistent whenever asymp-
totic linearity subsides, but that a simple bias-correction can restore consistency. This is in line with
the results in Hardle and Mammen (1993) and Cattaneo, Crump, and Jansson (2014a), completing
the results available for plug-in inference for U-statistics with 𝑛-dependent kernels.

Consider then the following plug-in estimators

𝜎2
𝐿
= 𝑛−1

𝑛∑︁
𝑖=1

𝑙̂𝑛,𝑖
2, (3.1)

𝜎2
𝑊

= ℎ𝑛

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑤𝑛,𝑖, 𝑗
2, (3.2)

with

𝑢0
𝑛 =

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗), (3.3)

𝑙̂𝑛,𝑖 = (𝑛 − 1)−1
𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) − 𝑢0
𝑛, (3.4)

𝑤𝑛,𝑖, 𝑗 = 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) − 𝑙̂𝑛,𝑖 − 𝑙̂𝑛, 𝑗 + 𝑢0
𝑛. (3.5)
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We first collect in the following lemmas the limits in probability of the estimators 𝜎2
𝐿

and
𝜎2
𝑊

for a whole range of bandwidth sequence rates. These limits are then directly used to show
consistency and inconsistency of different (rescaled) plug-in variance estimators. The proofs of
these lemmas are relegated to Section A.4. of the Supplementary Material.

Lemma 3.2.
1. If 𝑛ℎ𝑛 → ∞, then

𝜎2
𝐿
= 𝜎2

𝐿 + 𝑜𝑃 (1).

2. If 𝑛ℎ𝑛 → 𝐶 ∈ (0,∞), then

𝑛−1𝜎2
𝐿
= 𝑛−1

(
𝜎2
𝐿 + 2

𝐶
𝜎2
𝑊 + 𝑜𝑃 (1)

)
.

3. If 𝑛2ℎ𝑛 → ∞ and 𝑛ℎ𝑛 → 0, then

𝑛−1𝜎2
𝐿
=

(
𝑛

2

)−1
ℎ−1
𝑛

(
𝜎2
𝑊 + 𝑜𝑃 (1)

)
Lemma 3.3. If 𝑛2ℎ𝑛 → ∞, then

𝜎2
𝑊

= 𝜎2
𝑊 + 𝑜𝑃 (1).

Recall again the characterization of Var𝑈𝑛 given by

Var𝑈𝑛 = 4𝑛−1
(
𝜎2
𝐿 + 𝑜(1)

)
+

(
𝑛

2

)−1
ℎ−1
𝑛

(
𝜎2
𝑊 + 𝑜(1)

)
.

Then it follows directly from the two previous lemmas that the plug-in estimator

𝑉̂𝑛,𝑝 = 4𝑛−1𝜎2
𝐿
+

(
𝑛

2

)−1
ℎ−1
𝑛 𝜎2

𝑊

is consistent when the linear term dominates but inconsistent otherwise. However, it is possible to
construct a rescaled version

𝑉̂𝑛,𝑟 = 4𝑛−1𝜎2
𝐿
− 3

(
𝑛

2

)−1
ℎ−1
𝑛 𝜎2

𝑊

which is directly seen to be consistent in all cases. These results are summarized in the next
propositions.

Proposition 3.2. If 𝑛ℎ𝑛 → 0 and 𝑛2ℎ𝑛 → ∞, then

𝑉̂𝑛,𝑝 − 3Var𝑈𝑛 = 𝑜𝑝 (1)

with

𝑉̂𝑛,𝑝 = 4𝑛−1𝜎2
𝐿
+

(
𝑛

2

)−1
ℎ−1
𝑛 𝜎2

𝑊
.
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Proof. This follows directly from Lemma 3.2 and Lemma 3.3 and the characterization of Var𝑈𝑛

in Equation (A.1). □

Proposition 3.3. If 𝑛2ℎ𝑛 → ∞, then

𝑉̂
−1/2
𝑛,𝑟 (𝑈𝑛 − 𝜃0) ⇝ 𝑁 (0, 1)

with

𝑉̂𝑛,𝑟 = 4𝑛−1𝜎2
𝐿
− 3

(
𝑛

2

)−1
ℎ−1
𝑛 𝜎2

𝑊
.

Proof. This follows directly from Lemma 3.2 and Lemma 3.3, the characterization of Var𝑈𝑛 in
Equation (A.1), and an application of Slutsky’s theorem in Corollary 2.3. □

Remark 3.5. There exists another method to restore consistency of the plug-in variance estimator
that is also considered in Cattaneo, Crump, and Jansson (2014b,a). It consists in estimating the
variance with a bandwidth sequence 𝐻𝑛 converging at a different rate than the bandwidth sequence
ℎ𝑛 used to estimate 𝜃0. The validity of the method follows directly from Lemma 3.2 by taking
𝐻𝑛 in the estimation of 𝜎2

𝐿
such that 𝑛𝐻𝑛 → ∞. In this case, the plug-in estimator with double

bandwidth sequences is directly seen to be consistent without rescaling. The method is, however,
difficult to implement in practice as it requires the choice of two bandwidth sequences.

3.3 Inconsistency of the non-parametric bootstrap

We now show that the non-parametric bootstrap fails to reproduce the underlying distribution
across the whole range of bandwidth sequences for which Corollary 2.3 holds. Failure happens
whenever the linear terms does not dominate asymptotically. A similar result for a different
problem was first obtained by Hardle and Mammen (1993). The same logic underlies the result
in Cattaneo, Crump, and Jansson (2014a). The underlying reason can already be seen from the
previous results where we had to "manually" rescale the variance of the quadratic term to obtain
a consistent estimator of Var𝑈𝑛. Sensibly similar issues and solutions were already reported on
jackknife estimate of variance for U-statistics – see Efron and Stein (1981).

Let X𝑛 = {𝑋1, 𝑋2, . . . , 𝑋𝑛} be an i.i.d. sample. Then take X ∗
𝑛 = {𝑋∗

1 , 𝑋
∗
2 , . . . , 𝑋

∗
𝑛} an

i.i.d. sample from the empirical distribution P𝑛 based on X𝑛. Equivalently, X ∗ can be obtained
by uniformly sampling 𝑛 times from X𝑛 with replacement. Denote by 𝑃∗,E ∗,Var∗, cov∗, the
probability, expectation, variance, and covariance taken with respect to the empirical distribution
conditional on X𝑛. We introduce the bootstrap analogue to the estimator previously introduced

𝑈∗
𝑛 =

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

1
ℎ𝑛
𝐾

(
𝑋∗
𝑖
− 𝑋∗

𝑗

ℎ𝑛

)
=

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋∗
𝑖 , 𝑋

∗
𝑗 ).

The statistics 𝑈∗
𝑛 is the same second-order U-statistics with 𝑛-dependent kernel 𝑘𝑛 as 𝑈𝑛 but

computed over the random sample X ∗
𝑛 instead of X𝑛. Note that conditional on X𝑛, the empirical
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distribution is a discrete (non-random) distribution, namely, multinomial with uniform weights 1/𝑛.
It follows that the statistics 𝑈∗

𝑛 admits a Hoeffding decomposition with respect to the empirical
distribution conditional on X𝑛. In virtue of Lemma 1.1, we have

𝑈∗
𝑛 = E ∗ [𝑈∗

𝑛] + 2𝐿∗𝑛 +𝑊∗
𝑛

with

𝐿∗𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

[
𝑢1∗
𝑛 (𝑋∗

𝑖 ) − 𝑢0∗
𝑛

]
𝑊∗

𝑛 =

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

[
𝑢2∗
𝑛 (𝑋∗

𝑖 , 𝑋
∗
𝑗 ) − 𝑢1∗

𝑛 (𝑋∗
𝑖 ) − 𝑢1∗

𝑛 (𝑋∗
𝑗 ) + 𝑢0∗

𝑛

]

and

𝑢0∗
𝑛 = E ∗ [𝑈∗

𝑛]

𝑢1∗
𝑛 (𝑋∗

𝑖 ) = E ∗ [𝑘𝑛 (𝑋∗
𝑖 , 𝑋

∗
𝑗 ) |𝑋∗

𝑖 ]

𝑢2∗
𝑛 (𝑋∗

𝑖 , 𝑋
∗
𝑗 ) = 𝑘𝑛 (𝑋∗

𝑖 , 𝑋
∗
𝑗 )

where 𝑖 ≠ 𝑗 are any two indexes.
By Lemma 1.2, we have

Var∗𝑈∗
𝑛 =

4
𝑛

Var∗(𝑢1∗
𝑛 (𝑋1)) +

2
𝑛(𝑛 − 1)Var∗(𝑢2∗

𝑛 (𝑋1, 𝑋2) − 𝑢1∗
𝑛 (𝑋1) − 𝑢1∗

𝑛 (𝑋2)).

Moreover, for the same reason as in the proof of Lemma 1.2, we also have

Var∗𝑈∗
𝑛 =

4
𝑛

Var∗(𝑢1∗
𝑛 (𝑋1)) +

2
𝑛(𝑛 − 1)

[
Var∗(𝑢2∗

𝑛 (𝑋1, 𝑋2)) − Var∗(𝑢1∗
𝑛 (𝑋1))

]
.

Then to compute Var∗𝑈∗
𝑛, we make use of the multinomial representation of the empirical

measure conditional on the observed sample. Similar computations have been used repeatedly
when bootstrapping U-statistics (be they with standard kernels or 𝑛-dependent kernels), see, for
instance, Dehling and Mikosch (1994) or Cattaneo, Crump, and Jansson (2014a). In particular,
note that 𝑢1∗

𝑛 (𝑋∗
𝑖
) can be rewritten as

𝑢1∗
𝑛 (𝑋∗

𝑖 ) = E Ξ [𝑘𝑛 (𝜉𝑖 (𝑋1, . . . , 𝑋𝑛), 𝜉 𝑗 (𝑋1, . . . , 𝑋𝑛)) |𝜉𝑖 , 𝑋1, 𝑋2, . . . , 𝑋𝑛]

where Ξ is the multimomial distribution with uniform weights and 𝜉1, 𝜉2, . . . , 𝜉𝑛 is an i.i.d. sample
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from this distribution, and so it follows that

𝑢1∗
𝑛 (𝑋∗

𝑖 ) =
1
𝑛

𝑛∑︁
𝑗=1

𝑘𝑛 (𝑋∗
𝑖 , 𝑋 𝑗).

Then we have

𝑢0∗
𝑛 = E ∗ [𝑢1∗

𝑛 (𝑋∗
𝑖 )] =

1
𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) =
𝑛 − 1
𝑛

𝑈𝑛.

Additional moment calculations then lead to the following result, which yields inconsistency of
the bootstrap variance whenever linearity subsides. The proof can be found in Section A.5. of the
Supplementary material.

Proposition 3.4. If 𝑛2ℎ𝑛 → ∞, then

Var∗𝑈∗
𝑛 − 4𝑛−1𝜎2

𝐿 − 3
(
𝑛

2

)−1
ℎ−1
𝑛 𝜎2

𝑊 = 𝑜𝑃 (1).

In particular, if 𝑛ℎ𝑛 → 0, then

Var∗𝑈∗
𝑛 − 3Var𝑈𝑛 = 𝑜𝑃 (1).

This proves the inconsistency of the bootstrap variance. However, inconsistency of the bootstrap
variance is not generally sufficient for inconsistency of the bootstrap distribution. To see that it holds
in this case, suppose by contradiction that

(𝑛
2
)1/2

ℎ
1/2
𝑛 (𝑈∗

𝑛 − 𝑛−1
𝑛
𝑈𝑛) ⇝ 𝑁 (0, 𝜎2

𝑊
) in probability.

Then the fact that Var∗𝑈∗
𝑛 − 4𝑛−1𝜎2

𝐿
− 3

(𝑛
2
)−1

ℎ−1
𝑛 𝜎2

𝑊
= 𝑜𝑃 (1) is enough to ensure uniform

integrability and convergence of second moments, as in Lemma 2.1. in Kato (2011) which extends
Theorem 4.5.2. in Chung (2001) to conditional distributions. Then lim𝑛→∞

(𝑛
2
)
ℎ𝑛Var∗𝑈∗

𝑛 = 𝜎2
𝑊

in probability, a contradiction.

Remark 3.6. Given the nature of bootstrap failure in this problem, there is a number of natural
potential candidates to restore consistency. The first ones are those in Cattaneo, Crump, and Jansson
(2014a), respectively subsampling and bootstrapping the studentized statistics for the consistent
variance estimator. A second set of solutions is based on recentering the kernel of the U-statistics
in the bootstrap world, or equivalently adjusting the random sampling weights (see Arcones and
Gine (1992) and Dehling and Mikosch (1994)). Other reweighing solutions based on a martingale
representation of the estimator in the spirit of Otsu and Rai (2017), extending the wild bootstrap
in Hardle and Mammen (1993), can also be investigated. A last set of candidates is based on the
smoothed bootstrap where resampling is not based on a (conditional) discrete distribution, but a
continuous one. Assessing the validity of and comparing these bootstrap methods for the average
density estimator considered here form an interesting problem that is left for future research.
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4 Conclusion

Estimating the expected value of a density is a foundational statistical problem: it is not only
a recurrently studied example due to its inherent simplicity among semi-parametric problems but
also a fundamental object due to its intrinsic connection to entropy estimation. The derivation
of valid inferential results for the average density beyond regular cases remains an important
challenge. We provide new solutions to this problem by first showing that the optimal kernel-based
plug-in estimator considered in Giné and Nickl (2008a) remains asymptotically normal both when
the bandwidth sequence converges to zero very rapidly and when the density is highly irregular.
This happens, however, at a cost, namely slower-than-parametric (but minimax-optimal) rates of
convergence and a convoluted asymptotic variance that depends on the density estimator. Because
of that, many standard inferential rules break down in spite of asymptotic normality: both the
plug-in principle for variance estimation and the non-parametric bootstrap fail. We show that
the problem can still be solved by fully leveraging the representation of the estimation as a U-
statistics with 𝑛-dependent kernel. We borrow techniques from and confirm features of previously
studied problems with similar structures – notably Hardle and Mammen (1993) and Cattaneo,
Crump, and Jansson (2014b,a). However, as we are able to work under much weaker regularity
assumptions, we can highlight new important features. We first connect the "small bandwidth
asymptotics" introduced in Cattaneo, Crump, and Jansson (2014b) for kernel-based estimators
with the "low smoothness asymptotics" traditionally considered in the literature. We then provide
formal guarantees that under-smoothing can produce robust rules even when the nuisance parameter
is very irregular. However, all these results depend fundamentally on the structure of the problem
at hand. Because average density estimation can be viewed as one of the simplest semi-parametric
problems and the estimator is optimal (in the sense of being semi-parametric efficient in regular
cases and minimax rate-optimal in non-regular cases), our results (both positive and negative) show
the inherent difficulty of semi-parametric problems beyond regular cases and the high-level results
available in Newey (1994), Andrews (1994), or Chen, Linton, and Van Keilegom (2003).
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Supplement to "Average Density: Weak Limits and Inference
in Non-Regular Semi-Parametric Problems"

Paul Delatte

The Supplementary Material to "Average Density: Weak Limits and Inference in Non-Regular
Semi-Parametric Problems" contains four sections. The first section (A) contains most of the
proofs of the results found in the main text. The second section (B) states and proves a result based
on a density argument extending 𝐿1-continuity. The third section (C) contains additional bounds
on the moments of some U-statistics that appear in Section A. The last section (D) reproduces and
comments on the bias result in Giné and Nickl (2008a).

A Proofs

A.1 Proof of the moment bounds of𝑈𝑛

Proof of Lemma 2.3. 1. By change of variable, we have

E [|𝑢1
𝑛 (𝑋𝑖) |𝑞] =

∫
R

���� ∫
R
𝐾ℎ (𝑢) 𝑓0(𝑥 − 𝑢) 𝑑𝑢

����𝑞 𝑓0(𝑥) 𝑑𝑥.
Since 𝑓 ∈ 𝐿𝑞, we conclude using the mollification theorem and continuity of the norm.

2. By change of variable and Fubini’s theorem, we have

E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑞] =

1
ℎ𝑞−1

∫
R
|𝐾 (𝑢) |𝑞

∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢,

and since 𝐾 ∈ 𝐿𝑞, we conclude by using Lemma B.1 and dominated convergence.
3. By Holder’s inequality, we have

E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑢1

𝑛 (𝑋𝑖) |𝑞] ≤ (E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗)2𝑟 ]E [|𝑢1

𝑛 (𝑋𝑖) |2𝑞])1/2

and we conclude directly by using (1.) and (2.).
4. By change of variable and Fubini’s theorem, we have

E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑢2

𝑛 (𝑋𝑖 , 𝑋𝑘) |𝑞]

=

∫
R

∫
R
|𝐾ℎ (𝑥 − 𝑦) |𝑟 𝑓0(𝑦) 𝑑𝑦

∫
R
|𝐾ℎ (𝑥 − 𝑧) |𝑞 𝑓0(𝑧) 𝑑𝑧 𝑓0(𝑥) 𝑑𝑥

=
1

ℎ𝑟+𝑞−2

∫
R

∫
R
|𝐾 (𝑢) |𝑟 |𝐾 (𝑣) |𝑞

∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥 − 𝑤ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢 𝑑𝑣

and we conclude by using the extension of Lemma B.1 and dominated convergence. □
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Proof of Lemma 2.4. 5. It suffices to show that

E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑢2

𝑛 (𝑋𝑖 , 𝑋𝑘) |𝑞 |𝑢2
𝑛 (𝑋 𝑗 , 𝑋𝑘) |𝑡 ] = 𝑂 (ℎ−𝑟−𝑞−𝑡+2).

The result then obtains by induction on 𝑙, using either independence, result (4.), or this result. By
using the same change of variable as in (4.), we directly obtain that

E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑢2

𝑛 (𝑋𝑖 , 𝑋𝑘) |𝑞 |𝑢2
𝑛 (𝑋 𝑗 , 𝑋𝑘) |𝑡 ]

=
1

ℎ𝑟+𝑞−2

∫
R

∫
R

1
ℎ𝑡

|𝐾 (𝑢 − 𝑣) |𝑡 |𝐾 (𝑢) |𝑟 |𝐾 (𝑣) |𝑞
∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥 − 𝑤ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢 𝑑𝑣

≤ ||𝐾 | |∞
ℎ𝑟+𝑞+𝑡−2

∫
R

∫
R
|𝐾 (𝑢) |𝑟 |𝐾 (𝑣) |𝑞

∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥 − 𝑤ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢 𝑑𝑣

and we can conclude as in (4.).
6. This follows directly from Holder’s inequality, independence, (5.) and (1.) as in (3.). □

Proof of Lemma 2.5. 1. We have 𝑙 (𝑋𝑖) = 𝑢1
𝑛 (𝑋𝑖)−𝑢0

𝑛 = 𝑢1
𝑛 (𝑋𝑖)−E [𝑢1

𝑛 (𝑋𝑖)], henceE [|𝑙 (𝑋𝑖) |𝑞] ≤
𝐶 (𝑞)E [|𝑢1

𝑛 (𝑋𝑖) |𝑞], and we conclude by Lemma 2.3.
2. If 𝑞 = 1, the result follows from the triangle inequality and Lemma 2.2. Suppose now

𝑞 ≥ 2. By the multinomial theorem and Lemma 2.3, the term that dominates asymptotically
is E [|𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑞] = 𝑂 (ℎ−𝑞+1), since E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑞−1 |𝑢1

𝑛 (𝑋𝑖) |] = 𝑂 (ℎ−𝑞+3/2) and all other
terms are of lower order. This concludes the proof.

3. If 𝑟 = 𝑞 = 1, the result follows from the triangle inequality and Lemma 2.3. Suppose
now w.l.o.g. that 𝑟 > 1. By the multinomial theorem and Lemma 2.4 with 𝑙 = 3, the only
two terms that can dominate asymptotically are E [|𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑢2
𝑛 (𝑋𝑖 , 𝑋𝑘) |𝑞] = 𝑂 (ℎ−𝑟−𝑞+2) and

E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟−1 |𝑢2

𝑛 (𝑋𝑖 , 𝑋𝑘) |𝑞 |𝑢1
𝑛 (𝑋𝑖) |] = 𝑂 (ℎ−𝑟+1−𝑞+ 3−1

2 ) = 𝑂 (ℎ−𝑟−𝑞+2), since all the other
terms are of lower order. This concludes the proof.

4. The same argument generalizes by induction on 𝑙, as there are always only two terms in the
multinomial expansions that can dominate asymptotically. □

A.2 Proof of the weak limits

Proof of Proposition 2.1. For simplicity, we write ℎ = ℎ𝑛. To directly apply the results of de Jong
(1987) and Eubank and Wang (1999), we recall and introduce some notations

𝑙 (𝑋𝑖) = 𝑢1
𝑛 (𝑋𝑖) − 𝑢0

𝑛,

𝑤(𝑋𝑖 , 𝑋 𝑗) = 𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) − 𝑢1

𝑛 (𝑋𝑖) − 𝑢1
𝑛 (𝑋 𝑗) + 𝑢0

𝑛,

and

𝐿𝑖 = 𝑛
−1/2𝑙 (𝑋𝑖) and 𝑊𝑖, 𝑗 =

(
𝑛

2

)−1/2
ℎ1/2𝑤(𝑋𝑖 , 𝑋 𝑗)
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for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 . From there, it follows that

√
𝑛𝐿𝑛 =

𝑛∑︁
𝑖=1

𝐿𝑖 =: 𝐿 (𝑛) and

√︄(
𝑛

2

)
ℎ𝑊𝑛 =

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑊𝑖, 𝑗 =: 𝑊 (𝑛).

In particular, Var(
√
𝑛𝐿𝑛) = 𝑂 (1) and Var(

√︃(𝑛
2
)
ℎ𝑊𝑛) = 𝑂 (1), so

Var
(√
𝑛𝐿𝑛 +

√︄(
𝑛

2

)
ℎ𝑊𝑛

)
= 𝑂 (1),

and so, in all the Lyapunov-type conditions, the normalizing variances can be taken to be 1. The
conditions (1.3) to (1.6) in Eubank and Wang (1999) then rewrite as(

𝑛

2

)−1
ℎ max

1≤𝑖≤𝑛

𝑛∑︁
𝑗=1

Var(𝑤(𝑋𝑖 , 𝑋 𝑗)) → 0, (EW1.3)

E [𝑊 (𝑛)4]/(Var𝑊 (𝑛))2 → 3, (EW1.4)

𝑛−2
𝑛∑︁
𝑖=1
E [𝑙 (𝑋𝑖)4] → 0, (EW1.5)(

𝑛

2

)−1
𝑛−1ℎE

[( 𝑛∑︁
𝑖=2

𝑖−1∑︁
𝑗=1
E [𝑤(𝑋𝑖 , 𝑋 𝑗)𝑙 (𝑋𝑖) |𝑋1, . . . , 𝑋𝑖−1]

)2]
→ 0. (EW1.6)

The i.i.d. assumption allows us to considerably simplifies those expressions. In particular, the
conditions above are equivalent to

𝑛−1ℎVar(𝑤(𝑋1, 𝑋2)) → 0, (EW1.3bis)

E [𝑊 (𝑛)4]/(Var𝑊 (𝑛))2 → 3, (EW1.4)

𝑛−1E [𝑙 (𝑋1)4] → 0, (EW1.5bis)

𝑛−1ℎVar
(
E [𝑤(𝑋2, 𝑋1)𝑙 (𝑋2) |𝑋1]

)
→ 0. (EW1.6bis)

The last equivalence follows from E [𝑋2] = Var(𝑋) + E [𝑋]2 and E [𝑤(𝑋𝑖 , 𝑋 𝑗)𝑙 (𝑋𝑖)] = 0. To
handle (EW1.4), we make use of the expansion of E [𝑊 (𝑛)4] in Table 1 in de Jong (1987). In par-
ticular, using the notations of de Jong (1987), it follows from our normalization that (EW1.4) holds
whenever the terms 𝐺I, 𝐺II, 𝐺III, 𝐺IV tend to zero and the term 𝐺V is asymptotically equivalent
to (Var(𝑊 (𝑛))2/2. Using the i.i.d. assumption and our notations, this reduces to the following
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conditions

𝑛−2ℎ2E [𝑤(𝑋1, 𝑋2)4] → 0 (dJ.𝐺I)

𝑛−1ℎ2E [𝑤(𝑋1, 𝑋2)2𝑤(𝑋1, 𝑋3)2] → 0 (dJ.𝐺II)

𝑛−1ℎ2E [𝑤(𝑋1, 𝑋2)2𝑤(𝑋1, 𝑋3)𝑤(𝑋3, 𝑋2)] → 0 (dJ.𝐺III)

ℎ2E [𝑤(𝑋1, 𝑋2)𝑤(𝑋1, 𝑋3)𝑤(𝑋4, 𝑋2)𝑤(𝑋4, 𝑋3)] → 0 (dJ.𝐺IV)

ℎE [𝑤(𝑋1, 𝑋2)2]/Var(𝑊 (𝑛)) → 1 (dJ.𝐺V)

where the last equivalence follows from 3
(𝑛
4
) (𝑛

2
)−2 ∼ 1/2. We now use Lemma 2.5 to prove that

all limits are as given. For (EW1.3bis), we have

Var𝑤(𝑋1, 𝑋2) ≤ 𝐸 [𝑤(𝑋1, 𝑋2)2] = 𝑂 (ℎ−1),

hence the result. For (dJ.𝐺I), we have

𝐸 [𝑤(𝑋1, 𝑋2)4] = 𝑂 (ℎ−3),

and so the result follows since 𝑛2ℎ → ∞. For (dJ.𝐺II),

E [𝑤(𝑋1, 𝑋2)2𝑤(𝑋1, 𝑋3)2] = 𝑂 (ℎ−2),

so the result follows. For (dJ.𝐺III), we have

E [𝑤(𝑋1, 𝑋2)2𝑤(𝑋1, 𝑋3)𝑤(𝑋3, 𝑋2)] = 𝑂 (ℎ−2),

so the result follows. For (dJ.𝐺IV), we have

E [𝑤(𝑋1, 𝑋2)𝑤(𝑋1, 𝑋3)𝑤(𝑋4, 𝑋2)𝑤(𝑋4, 𝑋3)] = 𝑂 (ℎ−3/2),

so the result follows since ℎ → 0. For (dJ.𝐺V), the result follows immediately from Lemma 2.2
and Lemma 2.5. For (EW1.5bis), we have

E [𝑙 (𝑋1)4] = 𝑂 (1),

so the result follows. For (EW1.6bis), we have

Var(E [𝑤(𝑋2, 𝑋1)𝑙 (𝑋2) |𝑋1]) ≤ E ((E [𝑤(𝑋2, 𝑋1)𝑙 (𝑋2) |𝑋1])2).

By monotonicity, conditional Holder’s inequality, and independence,

Var(E [𝑤(𝑋2, 𝑋1)𝑙 (𝑋2) |𝑋1]) ≤ E [𝑤(𝑋2, 𝑋1)] (E [𝑙 (𝑋2
2 )])

1/2 = 𝑂 (1),
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and so the result follows. This concludes the proof. □

Proof of Corollary 2.2. From Lemma 2.1 and Lemma 2.2 and Equation (1.2), we have

Var𝑈𝑛 = 4𝑛−1
(
𝜎2
𝐿 + 𝑜(1)

)
+

(
𝑛

2

)−1
ℎ−1
𝑛

(
𝜎2
𝑊 + 𝑜(1)

)
. (A.1)

In particular, (Var𝑈𝑛)−1/2 = 𝑂 (𝑛1/2 ∧ 𝑛ℎ1/2
𝑛 ). By distinguishing three cases if necessary, the

result then follows immediately from Equation (1.1), Slutsky’s theorem, Proposition 2.1, and the
normality of the marginals of bivariate normals. □

Proof of Corollary 2.3. 1. If 𝑛ℎ𝑛 → ∞, then (Var𝑈𝑛)−1/2 ∼ (4𝜎2
𝐿
)−1/2𝑛1/2. By Lemma D.1,

𝑛1/2(E [𝑈𝑛] − 𝜃0) = 𝑂 (𝑛1/2ℎ2𝑠) and so 𝑛1/2(E [𝑈𝑛] − 𝜃0) = 𝑜(1) since 𝑛ℎ4𝑠
𝑛 → 0. The result then

follows from Slutsky’s theorem and Corollary 2.2.
2. If 𝑛ℎ𝑛 → 𝐶 ∈ (0,∞), then (Var𝑈𝑛)−1/2 ∼ (4𝜎2

𝐿
+ 2

𝐶
𝜎2
𝑊
)−1/2𝑛1/2. As in (1.), since

𝑛ℎ4𝑠
𝑛 → 0, 𝑛1/2(E [𝑈𝑛] − 𝜃0) = 𝑜(1). The result follows again from Slutsky’s theorem and

Corollary 2.2.
3. If 𝑛ℎ𝑛 → 0, then (Var𝑈𝑛)−1/2 ∼ (𝜎2

𝑊
)−1/2ℎ1/2 (𝑛

2
)1/2. By Lemma D.1, ℎ1/2 (𝑛

2
)1/2(E [𝑈𝑛] −

𝜃0) = 𝑂 (𝑛ℎ2𝑠+1/2) and so 𝑛1/2(E [𝑈𝑛] − 𝜃0) = 𝑜(1) since 𝑛ℎ2𝑠+1/2 → 0. The result follows again
from Slutsky’s theorem and Corollary 2.2. □

Proof of Corollary 2.4. 1. If 𝑠 > 1/4, then 𝑛ℎ𝑛 = 𝐶𝑛
4𝑠−1
4𝑠+1 → ∞ and 𝑛ℎ4𝑠 = 𝐶𝑛

−4𝑠+1
4𝑠+1 → 0.

2. If 𝑠 = 1/4, then 𝑛ℎ𝑛 → 𝐶 ∈ (0,∞).
3. If 𝑠 < 1/4, then 𝑛ℎ𝑛 = 𝐶𝑛

4𝑠−1
4𝑠+1 → 0.

The results then follow directly from Corollary 2.2 as in the proof of Corollary 2.3. □

A.3 Proofs of the consistency of the simple variance estimator

Proof of Lemma 3.1. 1. We start with
(𝑛
2
)−1 ∑𝑛−1

𝑖=1
∑𝑛

𝑗=𝑖+1 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗). It is seen from an i.i.d.
argument that

E

[(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
]
= E [𝑘𝑛 (𝑋1, 𝑋2)] .

Then, again by i.i.d. and Lemma 2.3,

E

[���(𝑛2)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) − E [𝑘𝑛 (𝑋1, 𝑋2)]
���2] = Var

((
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
)

= Var𝑈𝑛 = 𝑂 (𝑛−1 + 𝑛−2ℎ−1).

By 𝐿2-convergence, it follows that(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) =
∫
R
𝑓0(𝑥) 𝑑𝑥 + 𝑜𝑃 (1).
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We now consider 𝑛−1 ∑𝑛
𝑖=1

(𝑛−1
2

)−1 ∑𝑛−1
𝑗=1, 𝑗≠𝑖

∑𝑛
𝑘= 𝑗+1, 𝑘≠𝑖 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘). It is seen

from an i.i.d. argument that

E

[
𝑛−1

𝑛∑︁
𝑖=1

(
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=1,
𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1,
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)
]
= E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3)] .

Note then by i.i.d. and the law of iterated expectation that

E [E [𝑘𝑛 (𝑋1, 𝑋2) |𝑋1]2] = E [E [𝑘𝑛 (𝑋1, 𝑋2) |𝑋1]E [𝑘𝑛 (𝑋1, 𝑋3) |𝑋1]]

= E [E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3) |𝑋1]]

= E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3)] .

Then

E

[���𝑛−1
𝑛∑︁
𝑖=1

(
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=1,
𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1,
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘) − E [E [𝑘𝑛 (𝑋1, 𝑋2) |𝑋1]2]
���2]

= Var
(
𝑛−1

𝑛∑︁
𝑖=1

(
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=1, 𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1, 𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)
)

= 𝑛−1Var
((
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

𝑘𝑛 (𝑋1, 𝑋 𝑗)𝑘𝑛 (𝑋1, 𝑋𝑘)
)

+ 𝑛−2𝑛(𝑛 − 1)
(
𝑛 − 1

2

)−2
cov

( 𝑛−1∑︁
𝑖=2

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗),
𝑛−1∑︁
𝑘=1
𝑘≠2

𝑛∑︁
𝑙=𝑘+1
𝑙≠2

𝑘𝑛 (𝑋2, 𝑋𝑘)𝑘𝑛 (𝑋2, 𝑋𝑙)
)

= 𝑛−1𝑅1 + 2𝑛−2
(
𝑛 − 1

2

)−1
𝑅2,

with

𝑅1 = Var
((
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

𝑘𝑛 (𝑋1, 𝑋 𝑗)𝑘𝑛 (𝑋1, 𝑋𝑘)
)
,

and

𝑅2 = cov
( 𝑛−1∑︁

𝑖=2

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗),
𝑛−1∑︁
𝑘=1
𝑘≠2

𝑛∑︁
𝑙=𝑘+1
𝑙≠2

𝑘𝑛 (𝑋2, 𝑋𝑘)𝑘𝑛 (𝑋2, 𝑋𝑙)
)
,

where the penultimate equality follows from expanding the variance around the sum and identical
distributions across 𝑖. In Lemma C.3, it is shown that

𝑅2 = 𝑂 (𝑛3 + 𝑛2ℎ−1
𝑛 + 𝑛ℎ−2

𝑛 ).
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For 𝑅1, note that by the law of total variance, we have

𝑅1 = 𝐴 + 𝐵

where

𝐴 = E

[
Var

((
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

𝑘𝑛 (𝑋1, 𝑋 𝑗)𝑘𝑛 (𝑋1, 𝑋𝑘)
���𝑋1

)]
,

𝐵 = Var
((
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

E [𝑘𝑛 (𝑋1, 𝑋 𝑗)𝑘𝑛 (𝑋1, 𝑋𝑘) |𝑋1]
)
.

Note that conditional on 𝑋1, the term within the variance in 𝐴 is a second-order U-statistics with
kernel 𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3), hence it admits a Hoeffding decomposition and its variance can be
bounded by standard argument. The quadratic term can be shown to be 𝑂 (𝑛−2ℎ−2

𝑛 ). The linear
term can be shown to be 𝑂 (𝑛−1). This is proved in Lemma C.1. Now, we analyze the term 𝐵. We
have

𝐵 = Var
((
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

E [𝑘𝑛 (𝑋1, 𝑋 𝑗)𝑘𝑛 (𝑋1, 𝑋𝑘) |𝑋1]
)

= Var
((
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

E [𝑘𝑛 (𝑋1, 𝑋2) |𝑋1]2
)

≤ E
[
E [𝑘𝑛 (𝑋1, 𝑋2) |𝑋1]4] = 𝑂 (1),

where the last equality follows from independence, the law of iterated expectation, and Lemma 2.4.
It follows that

𝑅1 = 𝑂 (1 + 𝑛−2ℎ−2
𝑛 + 𝑛−1),

and so

𝑛−1𝑅1 + 2𝑛−2
(
𝑛 − 1

2

)−1
𝑅2 = 𝑂 (𝑛−3ℎ−2

𝑛 + 𝑛−1 + 𝑛−2 + 𝑛−2ℎ−1
𝑛 )

By 𝐿2-convergence, it follows that, whenever 𝑛ℎ𝑛 → 𝐶 ∈ (0,∞], we have

𝑛−1
𝑛∑︁
𝑖=1

(
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=1, 𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1, 𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘) =
∫
R
𝑓0(𝑥)3 𝑑𝑥 + 𝑜𝑃 (1).

If 𝑛ℎ𝑛 → 0, the same argument shows that

𝑛ℎ𝑛𝑛
−1

𝑛∑︁
𝑖=1

(
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=1, 𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1, 𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘) = 𝑜𝑃 (1).

A double application of the continuous mapping theorem then yields the result.

35



2. The proof operates with similar arguments. Note first that

E

[
ℎ𝑛

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2
]
= ℎ𝑛E

[
𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2] .

Then

E

[���ℎ𝑛 (𝑛2)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 − ℎ𝑛E [𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2]
���2] = ℎ2

𝑛Var
((
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2
)
.

Note that
(𝑛
2
)−1 ∑𝑛−1

𝑖=1
∑𝑛

𝑗=𝑖+1 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 is a second-order U-statistics with kernel 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2.
By Hoeffding decomposition and density arguments, its variance can be bounded in the same way
as the variance of𝑈𝑛. As proved in Lemma C.2, we can show that

Var
((
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2
)
= 𝑂 (𝑛−2ℎ−3

𝑛 ) +𝑂 (𝑛−1ℎ−2
𝑛 ).

We then have

E

[���ℎ𝑛 (𝑛2)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 − ℎ𝑛E [𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2]
���2] = 𝑂 (𝑛−2ℎ−1

𝑛 + 𝑛−1).

By 𝐿2-convergence, it follows that

ℎ𝑛

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 = 𝜎2
𝑊 + 𝑜𝑃 (1).

□

A.4 Proofs of the inconsistency of the plug-in variance estimator

Proof. We start by expanding 𝜎2
𝐿
. We have

𝜎2
𝐿
= 𝑛−1

𝑛∑︁
𝑖=1

(
(𝑛 − 1)−1

𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) − 𝑢0
𝑛

)2

= 𝑛−1(𝑛 − 1)−2
𝑛∑︁
𝑖=1

( 𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
)2

− 𝑢0
𝑛

(
𝑛

2

)−1 𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) + 𝑢0
𝑛

2

= 𝑛−1(𝑛 − 1)−2
𝑛∑︁
𝑖=1

( 𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
)2

− 𝑢0
𝑛

2
.
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We now expand the first term on the right-end side

𝑛−1(𝑛 − 1)−2
𝑛∑︁
𝑖=1

( 𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
)2

= 𝑛−1(𝑛 − 1)−2
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 + 2𝑛−1(𝑛 − 1)−2
𝑛∑︁
𝑖=1

𝑛−1∑︁
𝑗=1
𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)

= �𝜎2
𝐿𝑊

+ (𝑛 − 2) (𝑛 − 1)−1𝜎2
𝐿
.

The result then follows directly from Lemma 3.1 and Remark 3.4. □

Proof. We start by expanding 𝜎2
𝑊

. We have

𝜎2
𝑊

= ℎ𝑛

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

[
𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 + ( 𝑙̂𝑛,𝑖 + 𝑙̂𝑛, 𝑗)2 + 𝑢0

𝑛

2

− 2𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) ( 𝑙̂𝑛,𝑖 + 𝑙̂𝑛, 𝑗) + 2𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑢0
𝑛 − 2( 𝑙̂𝑛,𝑖 + 𝑙̂𝑛, 𝑗)𝑢0

𝑛

]
= ℎ𝑛

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

[
𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 + 𝑙̂𝑛,𝑖2 + 𝑙̂𝑛, 𝑗2 + 3𝑢0

𝑛

2

+ 2(𝑛 − 1)−2
𝑛∑︁

𝑘=1
𝑘≠𝑖

𝑛∑︁
𝑙=1
𝑙≠ 𝑗

𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)𝑘𝑛 (𝑋 𝑗 , 𝑋𝑙)

− 2(𝑛 − 1)−1𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
( 𝑛∑︁
𝑘=1
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋𝑘) +
𝑛∑︁
𝑙=1
𝑙≠ 𝑗

𝑘𝑛 (𝑋 𝑗 , 𝑋𝑙)
)

− 2𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑢0
𝑛 − 4( 𝑙̂𝑛,𝑖 + 𝑙̂𝑛, 𝑗)𝑢0

𝑛

]
The only terms that are not directly covered by the previous results are the summands with cross-
terms, namely

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
( 𝑛∑︁
𝑘=1
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋𝑘) +
𝑛∑︁
𝑙=1
𝑙≠ 𝑗

𝑘𝑛 (𝑋 𝑗 , 𝑋𝑙)
)

and
𝑛∑︁

𝑘=1
𝑘≠𝑖

𝑛∑︁
𝑙=1
𝑙≠ 𝑗

𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)𝑘𝑛 (𝑋 𝑗 , 𝑋𝑙).

We show that all these terms are 𝑜𝑝 (1) by using previous results. We first have���� 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
𝑛∑︁

𝑘=1
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)
���� ≤ 𝑛∑︁

𝑖=1

( 𝑛∑︁
𝑗=1
𝑗≠𝑖

|𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) |
)2
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and ���� 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
𝑛∑︁
𝑙=1
𝑙≠ 𝑗

𝑘𝑛 (𝑋 𝑗 , 𝑋𝑙)
���� ≤ 𝑛∑︁

𝑖=1

( 𝑛∑︁
𝑗=1
𝑗≠𝑖

|𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) |
)2
.

Similarly, we have���� 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑛∑︁
𝑘=1
𝑘≠𝑖

𝑛∑︁
𝑙=1
𝑙≠ 𝑗

𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)𝑘𝑛 (𝑋 𝑗 , 𝑋𝑙)
���� ≤ 3

𝑛∑︁
𝑖=1

( 𝑛∑︁
𝑗=1
𝑗≠𝑖

|𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) |
)2
.

From the proof of Lemma 3.2, we directly get that

(𝑛 − 1)−1ℎ𝑛

(
𝑛

2

)−1 𝑛∑︁
𝑖=1

( 𝑛∑︁
𝑗=1
𝑗≠𝑖

|𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) |
)2

= 𝑜𝑃 (1).

Then by Lemma 3.1 and Lemma 3.2, we get that all terms in the expansion are 𝑜𝑃 (1), except

𝜎2
𝑊

= ℎ𝑛

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 = 𝜎2
𝑊 + 𝑜𝑃 (1).

This concludes the proof. □

A.5 Proof of the inconsistency of the non-parametric bootstrap

Proof of Proposition 3.4. From the multinomial representation, we have

Var∗(𝑢1∗
𝑛 (𝑋∗

𝑖 )) = E ∗ [(𝑢1∗
𝑛 (𝑋∗

𝑖 ))2] − (E ∗ [𝑢1∗
𝑛 (𝑋∗

𝑖 )])2

=
1
𝑛3

𝑛∑︁
𝑖=1

( 𝑛∑︁
𝑗=1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
)2

−
(𝑛 − 1
𝑛

)2
𝑈2

𝑛

=

(𝑛 − 1
𝑛

)2
𝜎2
𝐿

and

Var∗(𝑢2∗
𝑛 (𝑋∗

𝑖 , 𝑋
∗
𝑗 )) = E ∗ [𝑘𝑛 (𝑋∗

𝑖 , 𝑋
∗
𝑗 )2] − (E ∗ [𝑘𝑛 (𝑋∗

𝑖 , 𝑋
∗
𝑗 )])2

=
1
𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 −
(𝑛 − 1
𝑛

)2
𝑈2

𝑛

= ℎ−1
𝑛

𝑛 − 1
𝑛

𝜎2
𝑊

−
(𝑛 − 1
𝑛

)2
𝑈2

𝑛.

It follows that

Var∗𝑈∗
𝑛 =

4
𝑛

(𝑛 − 1
𝑛

)2
𝜎2
𝐿
+

(
𝑛

2

)−1 [
ℎ−1
𝑛

𝑛 − 1
𝑛

𝜎2
𝑊

−
(𝑛 − 1
𝑛

)2
𝑈2

𝑛 − 2
(𝑛 − 1
𝑛

)2
𝜎2
𝐿

]
.
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Then the result follows directly from Lemma 3.2 and Lemma 3.1. □

B A density argument

Lemma B.1. Let 𝑓 ∈ 𝐿1 ∩ 𝐿∞ and 𝑎, 𝑏 ∈ R. Then

lim
ℎ→0

∫
| 𝑓 (𝑥 + 𝑎ℎ) 𝑓 (𝑥 + 𝑏ℎ) − 𝑓 2(𝑥) | 𝑑𝑥 = 0.

Proof. We make use of a density argument. Suppose 𝑔 is continuous and compactly supported.
Then ∫

|𝑔(𝑥 + 𝑎ℎ)𝑔(𝑥 + 𝑏ℎ) − 𝑔2(𝑥) | 𝑑𝑥 ≤ 𝜆(𝐾) sup
𝑥

|𝑔(𝑥 + 𝑎ℎ)𝑔(𝑥 + 𝑏ℎ) − 𝑔2(𝑥) |

→ 0 as ℎ → 0,
(B.1)

since
|𝑎𝑏 − 𝑐𝑑 | ≤ |𝑏 | |𝑎 − 𝑐 | + |𝑐 | |𝑏 − 𝑑 |

which yields

sup
𝑥

|𝑔(𝑥 + 𝑎ℎ)𝑔(𝑥 + 𝑏ℎ) − 𝑔2(𝑥) |

≤ sup
𝑥

|𝑔(𝑥 + 𝑎ℎ) | |𝑔(𝑥 + 𝑏ℎ) − 𝑔(𝑥) | + sup
𝑥

|𝑔(𝑥) | |𝑔(𝑥 + 𝑎ℎ) − 𝑔(𝑥) |

≤ 𝑐1 sup
𝑥

|𝑔(𝑥 + 𝑏ℎ) − 𝑔(𝑥) | + 𝑐2 sup
𝑥

|𝑔(𝑥 + 𝑎ℎ) − 𝑔(𝑥) |

→ 0 as ℎ → 0, by uniform continuity of 𝑔.

Now, by density of 𝐶𝑐 in 𝐿1, for 𝜀 > 0, there is 𝑔 ∈ 𝐶𝑐 satisfying
∫
| 𝑓 (𝑥) − 𝑔(𝑥) | 𝑑𝑥 ≤ 𝜀. Then∫

| 𝑓 (𝑥 + 𝑎ℎ) 𝑓 (𝑥 + 𝑏ℎ) − 𝑔(𝑥 + 𝑎ℎ)𝑔(𝑥 + 𝑏ℎ) | 𝑑𝑥

≤ ∥ 𝑓 ∥∞
∫

| 𝑓 (𝑥 + 𝑎ℎ) − 𝑔(𝑥 + 𝑎ℎ) | 𝑑𝑥 + ∥𝑔∥∞
∫

𝑓 (𝑥 + 𝑏ℎ) − 𝑔(𝑥 + 𝑏ℎ) 𝑑𝑥

≤ 2(∥ 𝑓 ∥∞ + ∥𝑔∥∞)𝜀

by density and translation invariance. Moreover,∫
| 𝑓 2(𝑥) − 𝑔2(𝑥) | 𝑑𝑥 ≤ ∥ 𝑓 ∥∞

∫
| 𝑓 (𝑥) − 𝑔(𝑥) | 𝑑𝑥 + ∥𝑔∥∞

∫
| 𝑓 (𝑥) − 𝑔(𝑥) | 𝑑𝑥

≤ 2(∥ 𝑓 ∥∞ + ∥𝑔∥∞)𝜀

by density. Finally, by (B.1), ∫
|𝑔(𝑥 + 𝑎ℎ)𝑔(𝑥 + 𝑏ℎ) − 𝑔2(𝑥) | ≤ 𝜀
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for ℎ sufficiently close to 0. It follows by the triangular inequality and the previous inequalities that∫
| 𝑓 (𝑥 + 𝑎ℎ) 𝑓 (𝑥 + 𝑏ℎ) − 𝑓 2(𝑥) | 𝑑𝑥

≤
∫

| 𝑓 (𝑥 + 𝑎ℎ) 𝑓 (𝑥 + 𝑏ℎ) − 𝑔(𝑥 + 𝑎ℎ)𝑔(𝑥 + 𝑏ℎ) | 𝑑𝑥

+
∫

|𝑔(𝑥 + 𝑎ℎ)𝑔(𝑥 + 𝑏ℎ) − 𝑔2(𝑥) | +
∫

| 𝑓 2(𝑥) − 𝑔2(𝑥) |

≤ (1 + 4(∥ 𝑓 ∥∞ + ∥𝑔∥∞))𝜀.

□

The same argument can be extended by extending the absolute inequality for higher order
products, e.g., for 𝑘 = 3,

|𝑎𝑏𝑐 − 𝑑𝑒 𝑓 | ≤ |𝑏 | |𝑐 | |𝑎 − 𝑑 | + |𝑐 | |𝑑 | |𝑏 − 𝑒 | + |𝑑 | |𝑒 | |𝑐 − 𝑓 |.

By the exact same density argument, we obtain the following extension.

Corollary B.1. Let 𝑓 ∈ 𝐿1 ∩ 𝐿∞ and 𝐴 ⊂ R a finite subset. Then

lim
ℎ→0

∫
|Π𝑖∈𝐴 𝑓 (𝑥 + 𝑖ℎ) − 𝑓 #𝐴(𝑥) | 𝑑𝑥 = 0.

C Additional bounds on the variance of some U-statistics

When proving 𝐿2 convergence for estimators of the variance, a number of other second-order
U-statistics appear whose variance need to be bounded. In this section, we collect some of these
bounds. We also bound the covariance between two related U-statistics.

First, consider

𝐴1 =

(
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

𝑘𝑛 (𝑋1, 𝑋 𝑗)𝑘𝑛 (𝑋1, 𝑋𝑘).

Conditional on 𝑋1, this is a second-order U-statistics with kernel 𝑘𝑛 (𝑋1, 𝑋 𝑗)𝑘𝑛 (𝑋1, 𝑋𝑘). By the
Hoeffding decomposition and the general variance bounds for second-order U-statistics, we know
that, a.s.,

Var(𝐴1 |𝑋1) ≤ 𝜅1(𝑛−2E [𝑘𝑛 (𝑋1, 𝑋2)2𝑘𝑛 (𝑋1, 𝑋3)2 |𝑋1] + 𝑛−1E [E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3) |𝑋2]2 |𝑋1])

where 𝜅1 > 0, and so, by monotonicity and tower property of the expectation, we have

E [Var(𝐴1 |𝑋1)] ≤ 𝜅1(𝑛−2E [𝑘𝑛 (𝑋1, 𝑋2)2𝑘𝑛 (𝑋1, 𝑋3)2] + 𝑛−1E [E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3) |𝑋2]2]).

Lemma C.1. We have that

E [Var(𝐴1 |𝑋1)] = 𝑂 (𝑛−2ℎ−2
𝑛 + 𝑛−1)
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Proof. The bound for the quadratic term follows directly from Lemma 2.3, that is,

E [𝑘𝑛 (𝑋1, 𝑋2)2𝑘𝑛 (𝑋1, 𝑋3)2] = 𝑂 (ℎ−2
𝑛 ).

For the linear term, a subtle application of the mollification theorem in two dimensions can
deliver the result. However, a simpler argument using the properties of conditional expectations is
presented. Note that

E [E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3) |𝑋2]2]

= E [E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3) |𝑋2]E [𝑘𝑛 (𝑋4, 𝑋2)𝑘𝑛 (𝑋4, 𝑋5) |𝑋2]]

= E [E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3)𝑘𝑛 (𝑋4, 𝑋2)𝑘𝑛 (𝑋4, 𝑋5) |𝑋2]]

= E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3)𝑘𝑛 (𝑋4, 𝑋2)𝑘𝑛 (𝑋4, 𝑋5)] .

Then, by Lemma 2.4, it follows that

E [E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3) |𝑋2]2] = 𝑂 (1).

□

Consider now

𝐴2 =

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2.

This is a second-order U-statistics with kernel 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2. By the Hoeffding decomposition and
the general variance bounds for second-order U-statistics, we know that

Var 𝐴2 ≤ 𝜅2(𝑛−2E [𝑘𝑛 (𝑋1, 𝑋2)4] + 𝑛−1E [E [𝑘𝑛 (𝑋1, 𝑋2)2 |𝑋2]2])

for some 𝜅2 > 0.

Lemma C.2. We have that
Var 𝐴2 = 𝑂 (𝑛−2ℎ−3

𝑛 + 𝑛−1ℎ−2
𝑛 ).

Proof. The bound for the quadratic term follows directly from Lemma 2.3, that is,

E [𝑘𝑛 (𝑋1, 𝑋2)4] = 𝑂 (ℎ−3
𝑛 ).

For the linear term, we use the properties of the conditional expectation. We have

E [E [𝑘𝑛 (𝑋1, 𝑋2)2 |𝑋2]2] = E [𝑘𝑛 (𝑋1, 𝑋2)2𝑘𝑛 (𝑋3, 𝑋2)2]

and again by Lemma 2.3, we have

E [E [𝑘𝑛 (𝑋1, 𝑋2)2 |𝑋2]2] = 𝑂 (ℎ−2
𝑛 ).
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□

Now, consider the covariance

𝑅2 = cov
( 𝑛−1∑︁

𝑖=2

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗),
𝑛−1∑︁
𝑘=1
𝑘≠2

𝑛∑︁
𝑙=𝑘+1
𝑙≠2

𝑘𝑛 (𝑋2, 𝑋𝑘)𝑘𝑛 (𝑋2, 𝑋𝑙)
)
.

Modulo the scaling factors, this is the covariance between two U-statistics (with random kernels
anchored at 𝑋1 and 𝑋2, respectively). By finitude of all moments, a rough bound is directly given
by 𝑂 (𝑛4ℎ−2

𝑛 ). However, because of the i.i.d. assumption, many of summands are 0, namely all
those such that 1, 𝑖, 𝑗 are all different from 2, 𝑘, 𝑙. This allows us to drastically refine the bound.
We have that

Lemma C.3. We have that
𝑅2 = 𝑂 (𝑛3 + 𝑛2ℎ−1

𝑛 + 𝑛ℎ−2
𝑛 ).

Proof. Note first that the following expansion holds

𝑅2 =

𝑛−1∑︁
𝑖=2

𝑛∑︁
𝑗=𝑖+1

𝑛∑︁
𝑙=3

cov(𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋𝑙))

+
𝑛∑︁
𝑗=3

𝑛−1∑︁
𝑘=1
𝑘≠2

𝑛∑︁
𝑙=𝑘+1
𝑙≠2

cov(𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋𝑘)𝑘𝑛 (𝑋2, 𝑋𝑙))

+
𝑛−2∑︁
𝑖=3

𝑛−1∑︁
𝑗=𝑖+1

𝑛∑︁
𝑙= 𝑗+1

cov(𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋 𝑗)𝑘𝑛 (𝑋2, 𝑋𝑙))

+
𝑛−1∑︁
𝑖=3

𝑛∑︁
𝑗=𝑖+1

𝑛∑︁
𝑙=𝑖+1

cov(𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋𝑖)𝑘𝑛 (𝑋2, 𝑋𝑙))

+
𝑛−1∑︁
𝑖=4

𝑛∑︁
𝑗=𝑖+1

𝑖−1∑︁
𝑘=3

cov(𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋𝑘)𝑘𝑛 (𝑋2, 𝑋𝑖)),

which we rewrite as
𝑅2 = 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 + 𝑆5.

Note now that, for all 𝑚 ∈ {1, 2, 3, 4, 5},

𝑆𝑚 = 𝑂 (𝑛3 + 𝑛2ℎ−1
𝑛 + 𝑛ℎ−2

𝑛 ).

This follows from Lemma 2.4 and the fact that there are 4 different indexes in each summand,
except when one of the free indexes is exactly equal to one of the other indexes. This is shown for
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𝑆1 for illustration, but the same argument applies to the other terms. We have

𝑆1 =

𝑛−1∑︁
𝑖=3

𝑛∑︁
𝑗=𝑖+1

𝑛∑︁
𝑙=3

𝑙≠𝑖,𝑙≠ 𝑗

cov(𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋𝑙))

+
𝑛−1∑︁
𝑖=3

𝑛∑︁
𝑗=𝑖+1

cov(𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋𝑖))

+
𝑛−1∑︁
𝑖=3

𝑛∑︁
𝑗=𝑖+1

cov(𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋 𝑗))

+
𝑛∑︁
𝑗=3

cov(𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋 𝑗))

+
𝑛∑︁
𝑗=3

𝑛∑︁
𝑙=3
𝑙≠ 𝑗

cov(𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋𝑙))

By the i.i.d. assumption, each summand in the five terms of the expansion is equal, respectively, to

cov(𝑘𝑛 (𝑋1, 𝑋3)𝑘𝑛 (𝑋1, 𝑋4), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋5))

cov(𝑘𝑛 (𝑋1, 𝑋3)𝑘𝑛 (𝑋1, 𝑋4), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋3))

cov(𝑘𝑛 (𝑋1, 𝑋3)𝑘𝑛 (𝑋1, 𝑋4), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋4))

cov(𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋3))

cov(𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋4))

From Lemma 2.4, it follows that the first term in the expansion is 𝑂 (𝑛3), the second, third, and
fifth terms are 𝑂 (𝑛2ℎ−1

𝑛 ), while the fourth one is 𝑂 (𝑛ℎ−2
𝑛 ). □

D Bias results in Giné and Nickl (2008a)

Lemma D.1 (Part 1 of Theorem 1 in Giné and Nickl (2008a)). If 𝐾 satisfies Assumption K and 𝑓0

satisfies Assumption D(𝑠) with 𝑠 ∈ (0, 1/2]. Then the bias of𝑈𝑛 satisfies

E [𝑈𝑛] − 𝜃0 = 𝑂 (ℎ2𝑠
𝑛 ).
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Proof. Write 𝐾ℎ𝑛 (𝑥) = ℎ−1
𝑛 𝐾𝑛 (ℎ−1

𝑛 𝑥). We have

E [𝑈𝑛] − 𝜃0 =

∫
R

∫
R
𝐾ℎ𝑛 (𝑥 − 𝑦) 𝑓0(𝑦) 𝑑𝑦 𝑓0(𝑥) 𝑑𝑥 −

∫
R
𝑓0(𝑥) 𝑓0(𝑥) 𝑑𝑥

=

∫
R

∫
R
𝐾ℎ𝑛 (𝑥 − 𝑦) ( 𝑓0(𝑦) − 𝑓0(𝑥)) 𝑓0(𝑥) 𝑑𝑦 𝑑𝑥

=

∫
R

∫
R
𝐾 (𝑢) ( 𝑓0(𝑥 − 𝑢ℎ𝑛) − 𝑓0(𝑥)) 𝑓0(𝑥) 𝑑𝑢 𝑑𝑥

=

∫
R
𝐾 (𝑢)

( ∫
R
𝑓0(𝑢ℎ𝑛 − 𝑥) 𝑓0(𝑥) 𝑑𝑥 −

∫
R
𝑓0(0 − 𝑥) 𝑓0(𝑥) 𝑑𝑥

)
𝑑𝑢

=

∫
R
𝐾 (𝑢) (( 𝑓0 ∗ 𝑓0) (𝑢ℎ𝑛)) − ( 𝑓0 ∗ 𝑓0) (0)) 𝑑𝑢,

where ∗ denotes convolution and 𝑓0(𝑥) = 𝑓0(−𝑥). The second equality follows from the fact that
the kernel integrates to one, the third from the change of variable 𝑦 = 𝑥 − 𝑢ℎ𝑛, and the fourth from
Fubini’s theorem. Then by applying Lemma D.2 since 𝑓0 ∈ 𝐿1 as a probability density function,
we get

|E [𝑈𝑛] − 𝜃0 | ≤
∫
R
𝐶∥ 𝑓0∥2

2,𝑠 |𝐾 (𝑢) | |𝑢ℎ𝑛 |2𝑠 𝑑𝑢

= 𝑐1ℎ
2𝑠
𝑛

where 𝑐1 = 𝐶∥ 𝑓0∥2
2,𝑠

∫
R
|𝐾 (𝑢) | |𝑢 |2𝑠 𝑑𝑢 and 0 < 𝐶 < ∞ is a constant independent of 𝑓0 and ℎ𝑛. □

Lemma D.2 (Lemma 1 in Giné and Nickl (2008a)). If 𝑓 , 𝑔 ∈ 𝐿1 satisfy Assumption D(𝑠) with
0 < 𝑠 ≤ 1/2, then for any 𝑥 ∈ R and 𝑡 ≠ 0,

| ( 𝑓 ∗ 𝑔) (𝑥 + 𝑡) − ( 𝑓 ∗ 𝑔) (𝑥) |
|𝑡 |2𝑠

≤ 𝐶∥ 𝑓 ∥2,𝑠 ∥𝑔∥2,𝑠

where 0 < 𝐶 < ∞ is a fixed constant independent of 𝑓 , 𝑔, 𝑥 and 𝑡.

Proof. Denote 𝐹 the Fourier transform. Since 𝑓 , 𝑔 ∈ 𝐿1 and 𝑔 bounded, 𝑓 ∗𝑔 ∈ 𝐿1 and continuous,
and since 𝑓 , 𝑔 ∈ 𝐿2, we have 𝐹 ( 𝑓 ∗ 𝑔) ∈ 𝐿1. We then have

| ( 𝑓 ∗ 𝑔) (𝑥 + 𝑡) − ( 𝑓 ∗ 𝑔) (𝑥) |
|𝑡 |2𝑠

≤ |𝑡 |−2𝑠 ∥𝐹−1𝐹 [( 𝑓 ∗ 𝑔) (· + 𝑡) − ( 𝑓 ∗ 𝑔) (·)] ∥∞

≤ (2𝜋)−1 |𝑡 |−2𝑠 ∥𝐹 [( 𝑓 ∗ 𝑔) (· + 𝑡) − ( 𝑓 ∗ 𝑔) (·)] ∥1

= (2𝜋)−1 |𝑡 |−2𝑠
∫
R
|𝐹 ( 𝑓 ∗ 𝑔) (𝑢) (𝑒−𝑖𝑢𝑡 − 1) | 𝑑𝑢

= (2𝜋)−1
∫
R
|𝐹 𝑓 (𝑢) | |𝑢 |𝑠 |𝐹𝑔(𝑢) | |𝑢 |𝑠 | (𝑒

−𝑖𝑢𝑡 − 𝑒−𝑖0) |
|𝑢 |2𝑠 |𝑡 |2𝑠

𝑑𝑢

≤ 𝐶∥ 𝑓 ∥2,𝑠 ∥𝑔∥2,𝑠 .

The first inequality follows from the definition of the 𝐿∞ norm and the Fourier inversion theorem,
the second from the inequality ∥ 𝑓 ∥∞ ≤ ∥𝐹 𝑓 ∥1 (which also follows from the Fourier inversion
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theorem). The first equality follows from the definition of the 𝐿1 norm and the second from the
convolution theorem. The last inequality follows from Hölder’s inequality and the fact that 𝑒−𝑖 ( ·)

is bounded Lipschitz. □

Remark D.1. The assumption 𝑠 ≤ 1/2 is needed for 𝑐1 to be finite under assumption K. This can
be relaxed if

∫
|𝐾 (𝑢) | |𝑢 |2𝑠 𝑑𝑢 < ∞. If the kernel 𝐾 is non-negative (and so is a density function),

then this condition is equivalent to the random variable with density 𝐾 has finite 2𝑠 order moments.
This is often the case for kernel of order 1, and so the result can be naturally generalized to 𝑠 ≥ 1/2.

Remark D.2. The same proof is reproduced in Cattaneo and Jansson (2022). They use the following
trick to avoid introducing any Fourier analysis arguments. The last equality in the first display of
the proof of Lemma D.1. can be interpreted as the bias of density estimation where the density
is 𝑓0 ∗ 𝑓0((·)ℎ𝑛). A similar argument as Lemma D.2 can be used (namely Lemma 12 in Giné
and Nickl (2008b)) to show that convolution of functions in Besov spaces belong to some Hölder
spaces. Then results on the bias for density estimation in Hölder spaces can be invoked directly
(e.g., Proposition 1.2. in Tsybakov (2009)). A consequence of this argument is that the bias result
Lemma D.1 generalizes to a slightly larger smoothness class, the same as Laurent (2005), namely
a Besov class with smoothness parameter 𝑠 > 1/4.
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