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We show that the optimal estimator of the integrated square of a density considered in Giné
and Nickl (2008) remains asymptotically normal even when the density belongs to a Sobolev
space of order 𝑠 ≤ 1/4. We demonstrate, moreover, that, while standard inferential methods
break down, it is still possible to perform valid inference in that case. To show this, we connect
a number of results for second-order U-statistics with 𝑛-dependent kernels, derive moment
bounds for the estimator that are of independent interest, and construct a variance estimator
whose simple structure may be transposed to similar problems. This paper is, as far as we
know, the first to demonstrate the possibility of semi-parametric inference in the presence of
an infinite-dimensional non-smooth nuisance parameter.

1 Introduction

1.1 Problem and results overview

Let 𝑋 be a random variable with density 𝑓0 with respect to some measure 𝜇. Under integrability
conditions on the density, the map 𝑓0 ↦→

∫
𝑓 2
0 𝑑𝜇 is a well-defined functional commonly known

as the integrated square of 𝑓0. This quadratic functional has been the subject of much interest
in statistics. This interest is first explained by the fact that

∫
𝑓 2
0 𝑑𝜇 plays a prominent role in

density estimation. Robins and van der Vaart (2006) used it, for instance, in the construction of
adaptive confidence sets for density estimators. The interest in

∫
𝑓 2
0 𝑑𝜇 is further explained by

the fact this quadratic functional is a central object in information theory. It is, indeed, a natural
measure of concentration for dominated probability measures which corresponds exactly to the
Rényi entropy of order 2 after a log transform. Finally, and more fundamentally, the interest in
the integrated square of a density is explained by the shaping role this functional has played in
statistical theory. Since

∫
𝑓 2
0 𝑑𝜇 directly rewrites as E [ 𝑓0(𝑋)], this functional appears to be one of

the simplest semi-parametric objects in statistics. This simplicity had made its study paradigmatic
for semi-parametric estimation and its corresponding techniques – notably plug-in based ones with
and without debiasing. Many fundamental lines of research in the field have been initiated through
the study of this quadratic functional – be it the minimax theory for estimating smooth functionals
with its beginning in Bickel and Ritov (1988) or the theory of adaptive semi-parametric estimation
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with its start in Efromovich and Low (1996). These works as well as the paradigmatic simplicity of∫
𝑓 2
0 𝑑𝜇 have made this functional a canonical reference in semi-parametric theory. As a result, the

list of papers in which the integrated square of a density appears never stops growing: the functional
is often used to investigate the properties of hard-to-analyze semi-parametric estimators – see, for
instance, Leonenko, Pronzato, and Savani (2008) for a study of some plug-in nearest-neighbors
estimators – or to probe general semi-parametric inferential procedures – see, for instance, Kennedy,
Balakrishnan, and Wasserman (2020) for a bias testing problem in a causal inference context.

When 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independently and identically distributed (i.i.d.) random variables
with common density 𝑓0 with respect to the Lebesgue measure on the real line, Bickel and Ritov
(1988) first unearthed strong optimality bounds for the estimation of

∫
R
𝑓 2
0 (𝑥) 𝑑𝑥 and built an

estimator reaching these bounds under mild conditions. Two main alternative estimators were
subsequently proposed in the literature and were proved to reach the optimality bounds of Bickel
and Ritov (1988) under even milder conditions: an elegant estimator based on orthogonal series in
Laurent (1996) and a simple kernel estimator in Giné and Nickl (2008) of the form

2
𝑛(𝑛 − 1)ℎ𝑛

∑︁
1≤𝑖< 𝑗≤𝑛

𝐾

(
𝑋𝑖 − 𝑋 𝑗

ℎ𝑛

)
.

These estimators were proved to be asymptotically normal at parametric rates with minimal variance
when the density belonged to a Sobolev space of order 𝑠 > 1/4 and to reach the minimax-
optimal slower-than-parametric convergence rates when 𝑠 ≤ 1/4. In a recent paper, Robins, Li,
Tchetgen Tchetgen, and van der Vaart (2016) showed that the estimator of Laurent (1996) remained
asymptotically normal when 𝑠 < 1/4. The first contribution of our paper is to show that the
estimator of Giné and Nickl (2008) is also asymptotically normal when 𝑠 ≤ 1/4. For this purpose,
we leverage the structure of the estimator as a second-order U-statistics with 𝑛-dependent kernels
and resort to the central limit theorem for generalized quadratic forms of de Jong (1987). This is
the traditional approach to handle problems of the form – see, for instance, Hall (1984), Hardle
and Mammen (1993), or Cattaneo, Crump, and Jansson (2014b). The main technical challenge
in our setting comes from appropriately bounding the moments of the estimator under the weak
regularity conditions used in Giné and Nickl (2008). We show that it is possible to do so by only
leveraging the integrability conditions of the density. The fact that these bounds do not depend on
the smoothness of the density allows us to obtain the weak limits of the estimator by first varying the
convergence rates of its bandwidth sequence for any given Sobolev order 𝑠 > 0. By then applying
the result to an optimal bandwidth sequence, we directly obtain the different asymptotic regimes
for the estimator in terms of the value taken by 𝑠. Our proof strategy to obtain the weak limits of the
estimator in Giné and Nickl (2008) thus differs from the one used in Robins, Li, Tchetgen Tchetgen,
and van der Vaart (2016) for the estimator in Laurent (1996), but still delivers qualitatively similar
results (while allowing us also to handle the corner case 𝑠 = 1/4). By following a traditional
approach but under low-regularity conditions, our proof thus helps connect weak convergence
results for second-order U-statistics with 𝑛-dependent kernels.
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The second contribution of our paper is to tackle the problem of inference for the estimator
in Giné and Nickl (2008) in view of its extended asymptotic normality. This problem was not
considered by Robins, Li, Tchetgen Tchetgen, and van der Vaart (2016) for the estimator in Laurent
(1996). In fact, it has never been handled before for any estimator of the integrated square of
a density. We recover for the estimator in Giné and Nickl (2008) inferential results that are
qualitatively similar to those obtained for other second-order U-statistics with 𝑛-dependent kernels
– see, for instance, Hardle and Mammen (1993) and Cattaneo, Crump, and Jansson (2014b,a). In
particular, we show that if the quadratic term of the estimator dominates, then the plug-in variance
estimator is inconsistent and the non-parametric bootstrap fails, but it is still possible to construct
consistent variance estimators by leveraging the quadratic nature of the problem. Compared
to previous inferential results for U-statistics with 𝑛-dependent kernels, the main difference and
challenge in our problem come again from its low-regularity structure. We obtain, as a result, what
we believe is the first example in the literature of valid semi-parametric inference in the presence
of an infinite-dimensional non-smooth nuisance parameter. Beyond the paradigmatic nature of
this result, a number of practical implications directly follow from it. First, the rules we introduce
can be used in practice to perform valid inference for the integrated square of a density when the
density is known to be irregular (𝑠 ≤ 1/4). This is, as far as we know, the first rules available
for inference in this case. Moreover, as a consequence of the proof, we directly obtain new valid
inferential rules for an extended range of bandwidth sequences when the density is known to be
regular (𝑠 > 1/4). This can be used to motivate under-smoothing as a robust practice for inference
on the integrated square of a density in the smooth case – a similar motivation for under-smoothing
can be found in Cattaneo, Crump, and Jansson (2014b) for another smooth functional. In the
course of this paper, we also build a new leave-one-out variance estimator by constructive methods
whose simple structure may find applications in other inferential problem featuring second-order
U-statistics with 𝑛-dependent kernels.

The rest of the paper is constructed as follows. In the remaining parts of the Introduction, we
first introduce the estimator and the running hypotheses for the problem and then review Hoeffding’s
decomposition for U-statistics. In Section 2, we derive the moment bounds for the estimator and
prove that the estimator remains asymptotically normal even when the density belongs to a Sobolev
space of order 𝑠 ≤ 1/4. We obtain a first convergence result where the dominating term of the
estimator depends on the rate of convergence of the bandwidth sequence of the estimator. In virtue
of the assumption-lean moment bounds, no hypothesis on the smoothness of the density is needed
in this case. We then use this result to derive the weak limit of the estimator when the Sobolev class
for the density varies but the bandwidth sequence is fixed to the optimal one (trading off squared bias
against variance). In Section 3, we tackle the problem of inference based on these newly derived
weak limits. We show that while valid inference remains possible, many standard procedures break
down in spite of asymptotic normality. By leveraging the structure of the problem, we first build a
simple variance estimator and show its consistency by constructive methods in both the parametric
and non-regular regimes. We then show that the plug-in variance estimator is inconsistent in the
non-regular regime, but that a simple bias-correction restores consistency. These results are then
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used to show that the non-parametric bootstrap fails in the non-regular regime. Most of the proofs
are collected in the Supplementary Material.

1.2 Estimator and hypotheses

Let 𝑋1, . . . , 𝑋𝑛 be i.i.d. real-valued random variables with common square-integrable density
𝑓0 with respect to the Lebesgue measure on R. The parameter of interest is the integrated square
of the density 𝑓0 given by

𝜃0 =

∫
R
𝑓 2
0 (𝑥) 𝑑𝑥.

To estimate it, we consider the estimator in Giné and Nickl (2008) given by

𝑈𝑛 =
2

𝑛(𝑛 − 1)ℎ𝑛

∑︁
1≤𝑖< 𝑗≤𝑛

𝐾

(
𝑋𝑖 − 𝑋 𝑗

ℎ𝑛

)
,

where 𝐾 : R → R is a smoothing kernel with associated bandwidth ℎ𝑛. The estimator 𝑈𝑛 is
obtained by first plugging a kernel density estimator in the empirical counterpart to the moment
condition defining 𝜃0 and then removing the diagonal elements in the double sum. The estimator
𝑈𝑛 is directly seen to be a second-order U-statistics with 𝑛-dependent kernel 𝑘𝑛 given by

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) =
1
ℎ𝑛
𝐾

(
𝑋𝑖 − 𝑋 𝑗

ℎ𝑛

)
for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. The 𝑛-dependence of the kernel stems from the presence of ℎ𝑛.

For our study of the estimator 𝑈𝑛, we reuse the assumptions considered in Giné and Nickl
(2008) for the kernel function 𝐾 and the density 𝑓0. These assumptions are collected below in
Assumption K and Assumption D(𝑠), respectively. Fundamentally, the regularity of the problem is
controlled by assuming that 𝑓0 belongs to a Sobolev space and by varying its smoothness parameter
𝑠 > 0: the lower the value of 𝑠, the less regular the density 𝑓0.

To state these conditions, we introduce some standard notations. For 1 ≤ 𝑝 < ∞, we denote by
𝐿 𝑝 = 𝐿 𝑝 (R) = 𝐿 𝑝 (R;𝜆) the space of 𝑝-integrable functions with respect to the Lebesgue measure
𝜆 and endow it with the 𝑝-norm ∥𝜙∥ 𝑝𝑝 =

∫
R
𝜙(𝑥) 𝑝 𝑑𝑥. For 𝜙 ∈ 𝐿1, we define the Fourier transform

by 𝐹𝜙(𝑢) =
∫
R
𝑒−𝑖𝑢𝑥𝜙(𝑥) 𝑑𝑥 and we extend it by continuity to 𝐿2.

Assumption K. The kernel 𝐾 : R→ R satisfies:
1. 𝐾 is symmetric and bounded;
2.

∫
𝐾 (𝑢) 𝑑𝑢 = 1;

3.
∫
|𝐾 (𝑢) | |𝑢 | 𝑑𝑢 < ∞.

Remark 1.1. By assuming 𝐾 bounded and integrable, we have 𝐾 ∈ 𝐿1 ∩ 𝐿∞. It follows then
that 𝐾 ∈ 𝐿 𝑝 for 1 ≤ 𝑝 ≤ ∞. Indeed, given an arbitrary measure 𝜇 on a space 𝑋 , define
𝐴 = {𝑥 ∈ 𝑋 : | 𝑓 (𝑥) | > 1}, then 𝜇(𝐴) ≤

∫
𝐴
| 𝑓 (𝑥) | 𝑑𝜇 ≤ ∥ 𝑓 ∥1 and | 𝑓 (𝑥) |𝑝 ≤ | 𝑓 (𝑥) | on 𝑋 \ 𝐴,

hence
∫
𝑋
| 𝑓 (𝑥) |𝑝 𝑑𝜇 ≤

∫
𝐴
| 𝑓 (𝑥) |𝑝 𝑑𝜇 +

∫
𝑋\𝐴 | 𝑓 (𝑥) |𝑝 𝑑𝜇 ≤ ∥ 𝑓 ∥ 𝑝∞∥ 𝑓 ∥1 + ∥ 𝑓 ∥1 < ∞.
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Assumption D(𝒔). The density 𝑓0 satisfies:
1. 𝑓0 is bounded;
2. 𝑓0 ∈ 𝐻𝑠

2 , where 𝐻𝑠
2 = 𝑊2,𝑠 (R) is the Sobolev space of integrability 𝑝 = 2 and of order 𝑠,

that is,

𝐻𝑠
2 =

{
𝜙 ∈ 𝐿2 : ∥𝜙∥2,𝑠 = ∥𝐹𝜙(·) (1 + | · |2)𝑠/2∥2 < ∞

}
.

Remark 1.2. Since 𝑓0 is a density for some random variable, we implicitly assume that∫
R
𝑓0(𝑥) 𝑑𝑥 = 1 and so 𝑓0 ∈ 𝐿1. Boundedness of 𝑓0 implies that 𝑓0 ∈ 𝐿∞. Then 𝑓0 ∈ 𝐿1 ∩ 𝐿∞,

and so, by a similar argument as Remark 1.1, we have 𝑓0 ∈ 𝐿 𝑝 for any 1 ≤ 𝑝 ≤ ∞. It follows, in
particular, that 𝑓0 is square-integrable (which guarantees that 𝜃0 is well-defined).

Remark 1.3. It does not follow from these assumptions that 𝑓0 is necessarily continuous. In
particular, if 𝑓0 ∈ 𝐻𝑠

2 with 𝑠 < 1/2, then 𝑓0 can be discontinuous. Indeed, the Sobolev embedding
theorem only ensures continuity of 𝑓0 ∈ 𝐻𝑠

2 if 𝑠 ≥ 1/2. This is not an issue since continuity is not
needed. However, we will use repeatedly the integrability assumption that 𝑓0 is in 𝐿1 ∩ 𝐿∞. For
instance, we will make use of 𝐿1-continuity, that is, the fact that if 𝑓0 ∈ 𝐿1, then

lim
|𝑡 |→0

∫
| 𝑓0(𝑥 + 𝑡) − 𝑓0(𝑥) | 𝑑𝑥 = 0.

Other results of the sort will be used – they are based on a density argument using the fact that
compactly supported continuous functions are dense in 𝐿1.

Remark 1.4. The smoothness and integrability conditions in Assumption D(𝑠) are the one con-
sidered by Giné and Nickl (2008). Under Assumption D(𝑠), the authors showed that the bias
𝐵𝑛 = E [𝑈𝑛] − 𝜃0 of 𝑈𝑛 satisfied 𝐵𝑛 = 𝑂 (ℎ2𝑠) where 𝑠 is the Sobolev order for the density class.
For completeness, the proof is reproduced in Section D of the Supplementary Material. It is impor-
tant to note, however, that we are able in Section 2 to derive the weak limit of𝜎(𝑈𝑛)−1(𝑈𝑛−E [𝑈𝑛])
without using the smoothness assumption in D(𝑠) but only the integrability condition 𝑓0 ∈ 𝐿1∩𝐿∞.
It is only when looking at the centered quantity 𝜎(𝑈𝑛)−1(𝑈𝑛 − 𝜃0) that the smoothness parameter
𝑠 will play a role through the rate of decay of the bias. This has important consequences when
compared to previous results in the literature as explained in the introductions of Section 2 and
Section 3.

Remark 1.5 (On relaxing Assumption D(𝑠)). The smoothness condition in Assumption D(𝑠) is
already (much) more general than those used in the literature on second-order U-statistics with
𝑛-dependent kernels – see, e.g., Hall (1984), Hall and Marron (1987), Hardle and Mammen (1993),
or Cattaneo, Crump, and Jansson (2014b,a). It is the same smoothness assumption as considered
in Laurent (1996). It can be extended at no cost to the slightly more general class considered in
Laurent (2005) – see Section D of the Supplementary Material. The 𝐿∞ integrability assumption
in Assumption D(𝑠) is more crucial, both for the bias and the weak limit – see Remark 2 in Giné
and Nickl (2008) for a relaxation for the bias in the case of the Lipschitz class of Bickel and Ritov
(1988).
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Remark 1.6 (On multivariate extensions). We follow Giné and Nickl (2008) and focus on the
one-dimensional case 𝑑 = 1. This allows us to reuse their Fourier argument for handling the
bias without modification. It also greatly simplifies notations when deriving the tedious moment
bounds for the weak limits. This also allows us to work out direct arguments from which we can
unearth a new simple variance estimator than can be applied to other similar problems. Extending
our results to higher dimensions 𝑑 > 1 is of interest, especially to investigate the effects of the
order of the kernel on convergence and inference. These extensions are left for future research.

1.3 A preliminary Hoeffding decomposition

Most of the arguments we will make depend on the Hoeffding decomposition of the second-
order U-statistics𝑈𝑛. This is a well-known approach that dates back to Hoeffding (1948). Because
the decomposition will be used repeatedly, we collect in the next lemma the different terms entering
into the decomposition. It is useful to introduce the following notations

𝑢0
𝑛 = E [𝑈𝑛] = E [𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)],

𝑢1
𝑛 (𝑋𝑖) = E [𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑋𝑖]

𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) = 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗),

where 𝑖 ≠ 𝑗 are any two indexes.

Lemma 1.1 (Hoeffding Decomposition of 𝑈𝑛). The statistics 𝑈𝑛 admits the following Hoeffding
decomposition

𝑈𝑛 = E [𝑈𝑛] + 2𝐿𝑛 +𝑊𝑛 (1.1)

where
E [𝑈𝑛] = 𝑢0

𝑛,

𝐿𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

[
𝑢1
𝑛 (𝑋𝑖) − 𝑢0

𝑛

]
,

and

𝑊𝑛 =

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

[
𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) − 𝑢1

𝑛 (𝑋𝑖) − 𝑢1
𝑛 (𝑋 𝑗) + 𝑢0

𝑛

]
.

Proof. This follows from Theorem 1 in Section 1.6. in Lee (1990). In this case, the proof is
simpler. The equality follows directly by expanding the terms. The fact that 2𝐿𝑛 is a 𝐿2-projection
follows by verifying that E [(𝑈𝑛 − 2𝐿𝑛)

∑𝑛
𝑖=1 𝑔𝑖 (𝑋𝑖)] = 0. □

Lemma 1.2 (Variance of𝑈𝑛). The variance of𝑈𝑛 is given by

Var𝑈𝑛 =
4
𝑛

Var(𝑢1
𝑛 (𝑋1)) +

2
𝑛(𝑛 − 1)Var(𝑢2

𝑛 (𝑋1, 𝑋2) − 𝑢1
𝑛 (𝑋1) − 𝑢1

𝑛 (𝑋2)).

Proof. This follows directly from Theorem 4 in Section 1.6. in Lee (1990). For completeness, we
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rapidly sketch the proof. By construction, 2𝐿𝑛 and𝑊𝑛 are uncorrelated. In particular, we have

Var𝑈𝑛 = 4Var 𝐿𝑛 + Var𝑊𝑛. (1.2)

Since the components of 𝐿𝑛 are i.i.d. (as measurable functions of 𝑋𝑖), we have

Var 𝐿𝑛 =
1
𝑛

Var(𝑢1
𝑛 (𝑋1) − 𝑢0

𝑛) =
1
𝑛

Var(𝑢1
𝑛 (𝑋1)). (1.3)

Since the components of 𝑊𝑛 are uncorrelated for any four indexes 𝑖 < 𝑗 , 𝑘 < 𝑙 such that at least
three are different, we have

Var𝑊𝑛 =
2

𝑛(𝑛 − 1)Var(𝑢2
𝑛 (𝑋1, 𝑋2) − 𝑢1

𝑛 (𝑋1) − 𝑢1
𝑛 (𝑋2) + 𝑢0

𝑛)

=
2

𝑛(𝑛 − 1)Var(𝑢2
𝑛 (𝑋1, 𝑋2) − 𝑢1

𝑛 (𝑋1) − 𝑢1
𝑛 (𝑋2))

=
2

𝑛(𝑛 − 1)

[
Var(𝑢2

𝑛 (𝑋1, 𝑋2)) − 2Var(𝑢1
𝑛 (𝑋1))

]
,

(1.4)

where the last equality follows since cov(𝑢2
𝑛 (𝑋1, 𝑋2), 𝑢1

𝑛 (𝑋1)) = Var(𝑢1
𝑛 (𝑋1)) and

cov(𝑢1
𝑛 (𝑋1), 𝑢1

𝑛 (𝑋2)) = 0 (by independence of 𝑋1 and 𝑋2). □

From the proof, we get the alternative expression

Var𝑈𝑛 =
4
𝑛

Var(𝑢1
𝑛 (𝑋1)) +

2
𝑛(𝑛 − 1)

[
Var(𝑢2

𝑛 (𝑋1, 𝑋2)) − 2Var(𝑢1
𝑛 (𝑋1))

]
.

We also get the two useful inequalities

Var 𝐿𝑛 ≤ 1
𝑛
E [(𝑢1

𝑛 (𝑋1))2],

and
Var𝑊𝑛 ≤ 2

𝑛(𝑛 − 1)Var(𝑢2
𝑛 (𝑋1, 𝑋2)) ≤

2
𝑛(𝑛 − 1)E [(𝑢

2
𝑛 (𝑋1, 𝑋2))2] .

2 Asymptotic normality in the non-regular regime

2.1 Weak limits with varying bandwidth rates and arbitrary smoothness

In this section, we show that the estimator𝑈𝑛 remains asymptotically normal whether its linear
term dominates or its quadratic term dominates. To show this, we derive the weak limits of the
estimator 𝑈𝑛 for different convergence rates of the bandwidth sequence ℎ𝑛 to 0 as 𝑛 → ∞ while
keeping the smoothness of the density fixed to some arbitrary level 𝑠 > 0. This translates into the
following assumptions:

1. Assumption K;

2. Assumption D(𝑠) for some arbitrary 𝑠 > 0.
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Under these assumptions, we show in Corollary 2.3 that whenever:

• 𝑛ℎ𝑛 → ∞: the linear term of 𝑈𝑛 dominates and a standard central limit theorem delivers
asymptotic normality with variance the semi-parametric lower bound;

• 𝑛ℎ𝑛 → 0: the quadratic term of 𝑈𝑛 dominates and a central limit theorem for quadratic
forms delivers asymptotic normality of 𝑈𝑛; in this case, the variance depends on the kernel
and convergence is slower-than-parametric and depends on the bandwidth sequence.

We can further show that if:

• 𝑛ℎ𝑛 → (0,∞): the linear term and the quadratic term of 𝑈𝑛 have the same order, the weak
limit is still normal at the parametric rate, but the asymptotic variance depends on the kernel;

This is a standard behavior for second-order U-statistics with 𝑛-dependent kernels that is well-
understood – see, for instance, Robins, Li, Tchetgen Tchetgen, and van der Vaart (2016). However,
our proof follows a more traditional approach where the weak convergence when the quadratic
term dominates is handled by resorting to the central limit theorem of Hall (1984) as generalized
in de Jong (1987) – the same approach was notably used in Hardle and Mammen (1993) and
Cattaneo, Crump, and Jansson (2014b) for some other smooth functionals also estimated by some
second-order U-statistics with 𝑛-dependent kernels. The main challenge in our setting comes from
bounding the moments of 𝑈𝑛 under the weak regularity conditions of Giné and Nickl (2008).
We show that it is possible to bound these moments sufficiently by using a density argument that
only leverages the integrability conditions for the density. The qualitative nature of the resulting
bounds may be of independent interest for other integral functionals. This low-regularity setting
differs markedly from the other results in the literature that use de Jong (1987) – it will bear a few
interesting fruits later. We collect the bounds in Lemma 2.3, Lemma 2.4, and Lemma 2.5. Before
stating them, we characterize the asymptotic variance of 𝑈𝑛 in Lemma 2.1 and Lemma 2.2 – this
will be needed to obtain a closed form for the weak limit.

Lemma 2.1.

lim
𝑛→∞

𝑛Var 𝐿𝑛 =

∫
R
𝑓0(𝑥)3 𝑑𝑥 −

( ∫
R
𝑓0(𝑥)2 𝑑𝑥

)2
.

Proof. For simplicity, we write ℎ𝑛 = ℎ. From Equation (1.3), we have

𝑛Var 𝐿𝑛 = E [(𝑢1
𝑛 (𝑋1))2] − E [𝑢1

𝑛 (𝑋1)]2.

We first have

E [(𝑢1
𝑛 (𝑋1))2] =

∫
R

( ∫
R
𝐾ℎ (𝑥 − 𝑦) 𝑓0(𝑦) 𝑑𝑦

)2
𝑓0(𝑥) 𝑑𝑥

=

∫
R

( ∫
R
𝐾ℎ (𝑢) 𝑓0(𝑥 − 𝑢) 𝑑𝑢

)2
𝑓0(𝑥) 𝑑𝑥.
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Since 𝐾 ∈ 𝐿1 and 𝑓0 ∈ 𝐿2, we have by the mollification theorem (see Theorem 8.14. in Folland
(1999)) that

∫
R
𝐾ℎ (𝑢) 𝑓0(𝑥 − 𝑢) 𝑑𝑢 converges in 𝐿2 to 𝑓0 as ℎ → 0. That is,

lim
ℎ→0

∫
R

( ∫
R
𝐾ℎ (𝑢) 𝑓0(𝑥 − 𝑢) 𝑑𝑢 − 𝑓0(𝑥)

)2
𝑓0(𝑥) 𝑑𝑥 = 0.

Then, by continuity of the norm, we directly get that

lim
ℎ→0

∫
R

( ∫
R
𝐾ℎ (𝑢) 𝑓0(𝑥 − 𝑢) 𝑑𝑢

)2
𝑓0(𝑥) 𝑑𝑥 =

∫
R
𝑓0(𝑥)3 𝑑𝑥.

For the limit ofE [(𝑢1
𝑛 (𝑋1))]2, we can directly invoke a density argument that extends 𝐿1-continuity.

It is proved in Section B of the Supplementary Material. We first have

E [(𝑢1
𝑛 (𝑋1))] =

∫
R

∫
R
𝐾ℎ (𝑥 − 𝑦) 𝑓0(𝑦) 𝑑𝑦 𝑓0(𝑥) 𝑑𝑥

=

∫
R

∫
R
𝐾 (𝑢) 𝑓0(𝑥 − 𝑢ℎ) 𝑑𝑢 𝑓0(𝑥) 𝑑𝑥

=

∫
R
𝐾 (𝑢)

∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢.

(2.1)

Then, as proved in Section B of the Supplementary Material, we have

lim
ℎ→0

∫
R
| 𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥) − 𝑓0(𝑥)2 | 𝑑𝑥 = 0.

Then, by dominated convergence, we have

lim
ℎ→0

∫
R
𝐾 (𝑢)

∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢 =

∫
R
𝐾 (𝑢)

∫
R
𝑓0(𝑥)2 𝑑𝑥 𝑑𝑢

=

∫
R
𝑓0(𝑥)2 𝑑𝑥.

This concludes the proof by composition of limits. □

Remark 2.1. This result already appears in Theorem 1 in Giné and Nickl (2008) but our proofs
differ. Their proof is based on showing mean squared convergence of 𝐿𝑛 towards an i.i.d. sum
with 𝑌𝑖 = 𝑓0(𝑋𝑖) −

∫
R
𝑓0(𝑥)2 𝑑𝑥 and then obtaining convergence in variance from the triangular

inequality and continuity of the norm. Our proof is more direct and is provided because it is
based on a density argument that will be used repeatedly in this paper. The result would be direct
if 𝑓0 were continuous and compactly supported, but we did not assume continuity nor compact
support. However, functions in 𝐿1 are "approximately" such in the sense that continuous compactly
supported functions are dense in 𝐿1. This is this approximation that is used in proving the result in
Section B of the Supplementary Material as well as the mollification theorem and 𝐿1-continuity.

Lemma 2.2.
lim
𝑛→∞

(
𝑛

2

)
ℎ𝑛Var𝑊𝑛 =

∫
R
𝑓0(𝑥)2 𝑑𝑥

∫
R
𝐾 (𝑢)2 𝑑𝑢.

9



Proof. For simplicity, we write ℎ𝑛 = ℎ. From Equation (1.4), we have(
𝑛

2

)
Var𝑊𝑛 = Var(𝑢2

𝑛 (𝑋1, 𝑋2)) − 2Var(𝑢1
𝑛 (𝑋1)).

From the proof of Lemma 2.1, we know that Var(𝑢1
𝑛 (𝑋1)) = 𝑂 (1) = 𝑜(ℎ−1) and E [𝑢2

𝑛 (𝑋1,

𝑋2)]2 = E [𝑢1
𝑛 (𝑋1)]2 = 𝑂 (1) = 𝑜(ℎ−1). It remains to handle E [(𝑢2

𝑛 (𝑋1, 𝑋2))2]. We have

ℎE [(𝑢2
𝑛 (𝑋1, 𝑋2))2] = ℎ

∫
R

∫
R
(𝐾ℎ (𝑥 − 𝑦))2 𝑓0(𝑦) 𝑑𝑦 𝑓0(𝑥) 𝑑𝑥

= ℎ

∫
R

∫
R

1
ℎ
𝐾 (𝑢)2 𝑓0(𝑥 − 𝑢ℎ) 𝑑𝑢 𝑓0(𝑥) 𝑑𝑥

=

∫
R
𝐾 (𝑢)2

∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢

As in Equation (2.1), we can conclude by using the result proved in Section B of the Supplementary
Material and dominated convergence that

lim
ℎ→0

∫
R
𝐾 (𝑢)2

∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢 =

∫
R
𝑓0(𝑥)2 𝑑𝑥

∫
R
𝐾 (𝑢)2 𝑑𝑢.

□

From this results, it follows directly that Var(
√
𝑛𝐿𝑛) = 𝑂 (1) and Var(

√
𝑛𝑊𝑛) = 𝑂 ((𝑛ℎ𝑛)−1),

so that the dominating terms in the Hoeffding decomposition depends on lim𝑛→∞ 𝑛ℎ𝑛. To obtain
the weak limit, we have to be more precise and bound higher moments of 𝐿𝑛 and 𝑊𝑛. This is the
objective of Lemma 2.3, Lemma 2.4, and Lemma 2.5 which are proved in Section A.1. of the
Supplementary Material. The proofs make use of a recurring density argument that is stated and
proved in Section B of the Supplementary Material. This argument is similar to the one used to
prove Lemma 2.1 and Lemma 2.2.

Lemma 2.3. Let 𝑖, 𝑗 , 𝑘 ∈ {1, 2 . . . , 𝑛} with 𝑖 ≠ 𝑗 ≠ 𝑘 . Let 𝑞, 𝑟 ≥ 1 be integers. Then
1.

E [|𝑢1
𝑛 (𝑋𝑖) |𝑞] = 𝑂 (1);

2.
E [|𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑞] = 𝑂 (ℎ−𝑞+1);

3.
E [|𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑢1
𝑛 (𝑋𝑖) |𝑞] = 𝑂 (ℎ−𝑟+1/2);

4.
E [|𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑢2
𝑛 (𝑋𝑖 , 𝑋𝑘) |𝑞] = 𝑂 (ℎ−𝑟−𝑞+2);

Lemma 2.4. Let 𝐶𝑛
2 denote the set of all pairs (𝑖, 𝑗) with 𝑖 < 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛. For (𝑖, 𝑗) ∈ 𝐶𝑛

2 ,
let 𝑟𝑖, 𝑗 ≥ 0 be non-negative integers. For 𝑘 ∈ {1, 2, . . . , 𝑛}, let 𝑠𝑘 ≥ 0 be non-negative integers.
Suppose 𝑟𝑖, 𝑗 ≥ 1 for at least one pair (𝑖, 𝑗) ∈ 𝐶𝑛

2 . Suppose that 𝑠𝑘 ≥ 1 for at least one index
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𝑘 ∈ {1, 2, . . . , 𝑛}. Consider the product Π(𝑖, 𝑗 ) ∈𝐶𝑛
2
(𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗))𝑟𝑖, 𝑗 . Denote 𝑙 ∈ {1, 2, . . . , 𝑛} the
number of indexes 𝑖 such that 𝑟𝑖, 𝑗 ≠ 0 for at least one index 𝑗 ∈ {1, 2, . . . , 𝑖 − 1, 𝑖 + 1, . . . , 𝑛}. Then

5.
E [Π(𝑖, 𝑗 ) ∈𝐶𝑛

2
|𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟𝑖, 𝑗 ] = 𝑂 (ℎ−
∑

(𝑖, 𝑗) 𝑟𝑖, 𝑗+𝑙−1);

6.
E [Π(𝑖, 𝑗 ) ∈𝐶𝑛

2
|𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟𝑖, 𝑗Π𝑛
𝑘=1 |𝑢

1
𝑛 (𝑋𝑘) |𝑠𝑘 ] = 𝑂 (ℎ−

∑
(𝑖, 𝑗) 𝑟𝑖, 𝑗+ 𝑙−1

2 );

By using two nested density arguments, result (3.) and (6.) of last lemmas can probably be
improved to 𝑂 ( |ℎ|−𝑟+1) and 𝑂 (ℎ−

∑
(𝑖, 𝑗) 𝑟𝑖, 𝑗+𝑙−1), respectively, but the result is not needed to prove

the main result of this section and so we only resort to a cruder bound based on Holder’s inequality.
As shown in next lemma, the price to pay is a cruder and more cumbersome bound for the higher
moments of𝑊𝑛, which remains nevertheless sufficient for our purpose.

Lemma 2.5. Define

𝑙 (𝑋𝑖) = 𝑢1
𝑛 (𝑋𝑖) − 𝑢0

𝑛,

𝑤(𝑋𝑖 , 𝑋 𝑗) = 𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) − 𝑢1

𝑛 (𝑋𝑖) − 𝑢1
𝑛 (𝑋 𝑗) + 𝑢0

𝑛

for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 . Let 𝑖, 𝑗 , 𝑘 ∈ {1, 2 . . . , 𝑛} with 𝑖 ≠ 𝑗 ≠ 𝑘 . Let 𝑞, 𝑟 ≥ 1 be integers. Then
1.

E [|𝑙 (𝑋𝑖) |𝑞] = 𝑂 (1);

2.
E [|𝑤(𝑋𝑖 , 𝑋 𝑗) |𝑞] = 𝑂 (ℎ−𝑞+1);

3.
E [|𝑤(𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑤(𝑋𝑖 , 𝑋𝑘) |𝑞] = 𝑂 (ℎ−𝑟−𝑞+2);

4.
E [Π(𝑖, 𝑗 ) ∈𝐶𝑛

2
|𝑤(𝑋𝑖 , 𝑋 𝑗) |𝑟𝑖, 𝑗 ] = 𝑂 (ℎ−

∑
(𝑖, 𝑗) 𝑟𝑖, 𝑗+ 𝑙+1

2 ∨ ℎ−
∑

(𝑖, 𝑗) 𝑟𝑖, 𝑗+𝑙−1);

where the 𝐶𝑛
2 and 𝑙 are defined as in Lemma 2.4 for 𝑤 instead of 𝑢2

𝑛.

We are now ready to state the main result of this section, a central limit theorem for the
vector with elements properly standardized terms 𝐿𝑛 and 𝑊𝑛, from which the weak limit of
(Var𝑈𝑛)−1/2(𝑈𝑛 − E [𝑈𝑛]) can be directly derived. The proof is relegated to Section A.2. of the
Supplementary Material. The idea is to use the previously derived moment bounds to apply the
central limit theorem for quadratic forms of de Jong (1987).

Proposition 2.1. If 𝑛2ℎ𝑛 → ∞, then the terms 𝐿𝑛 and 𝑊𝑛 in the Hoeffding decomposition (1.1)
converges jointly in distribution to a bivariate normal distribution

©­«
√
𝑛𝐿𝑛√︃(𝑛

2
)
ℎ𝑛𝑊𝑛

ª®¬⇝ N
[(

0
0

)
,

(
𝜎2
𝐿

0
0 𝜎2

𝑊

)]
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where

𝜎2
𝐿 =

∫
R
𝑓0(𝑥)3 𝑑𝑥 −

( ∫
R
𝑓0(𝑥)2 𝑑𝑥

)2
,

𝜎2
𝑊 =

∫
R
𝑓0(𝑥)2 𝑑𝑥

∫
R
𝐾 (𝑢)2 𝑑𝑢.

From the Hoeffding decomposition for𝑈𝑛, Lemma 2.1, and Lemma 2.2, we can directly derive
the weak limit of (Var𝑈𝑛)−1/2(𝑈𝑛 − E [𝑈𝑛]) from the previous result. The proof can be found in
Section A.2. of the Supplementary Material.

Corollary 2.2. If 𝑛2ℎ𝑛 → ∞, then

(Var𝑈𝑛)−1/2(𝑈𝑛 − E [𝑈𝑛]) ⇝ 𝑁 (0, 1).

We can now make use of the bias result in Giné and Nickl (2008) – see Section D of the
Supplementary Material – to obtain the weak limits of (Var𝑈𝑛)−1/2(𝑈𝑛 − 𝜃0). The proof is
relegated to Section A.2. of the Supplementary Material.

Corollary 2.3. 1. If 𝑛ℎ𝑛 → ∞ and 𝑛ℎ4𝑠
𝑛 → 0, then

√
𝑛(𝑈𝑛 − 𝜃0) ⇝ 𝑁 (0, 4𝜎2

𝐿).

2. If 𝑛ℎ𝑛 → 𝐶 ∈ (0,∞) and 𝑛ℎ4𝑠
𝑛 → 0, then

√
𝑛(𝑈𝑛 − 𝜃0) ⇝ 𝑁

(
0, 4𝜎2

𝐿 + 2
𝐶
𝜎2
𝑊

)
.

3. If 𝑛2ℎ𝑛 → ∞, 𝑛ℎ𝑛 → 0, and 𝑛ℎ2𝑠+ 1
2

𝑛 → 0, then√︄(
𝑛

2

)
ℎ𝑛 (𝑈𝑛 − 𝜃0) ⇝ 𝑁 (0, 𝜎2

𝑊 ).

Remark 2.2. Conditions in (1.) and (2.) can only hold if 𝑠 > 1/4. The last two conditions in
(3.) have the following relation: if 𝑠 > 1/4, then 𝑛ℎ𝑛 → 0 implies 𝑛ℎ2𝑠+ 1

2
𝑛 → 0; if 𝑠 < 1/4,

then 𝑛ℎ2𝑠+ 1
2

𝑛 → 0 implies 𝑛ℎ𝑛 → 0. For (2.), it would be of interest to relax the conditions to
𝑛ℎ4𝑠

𝑛 → 𝐶′ ∈ (0,∞), but it is not clear if such a result holds: the bias result of Giné and Nickl
(2008) only gives 𝐵𝑛 = 𝑂 (ℎ2𝑠) – see Section D of the Supplementary Material.

2.2 Weak limits with varying smoothness and optimal bandwidth sequence

The asymptotic normality of 𝑈𝑛 obtained in Corollary 2.2 can be applied directly when an
optimal bandwidth sequence ℎ𝑛 is used in 𝑈𝑛. Indeed, if ℎ𝑛 satisfies Assumption OB below, then
we necessarily have 𝑛2ℎ𝑛 → ∞. In this case, the dominating term for the weak limit depends on
the order 𝑠 > 0 of the Sobolev class to which the density 𝑓0 belongs: if 𝑠 > 1/4, the linear term
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dominates; if 𝑠 = 1/4, the linear term and the quadratic term have the same order; if 𝑠 < 1/4, the
quadratic term dominates. We then recover an asymptotic regime whose form is more traditional
and directly comparable to the results in Bickel and Ritov (1988), Laurent (1996), Giné and Nickl
(2008), or Robins, Li, Tchetgen Tchetgen, and van der Vaart (2016). It is seen, in particular, to
directly extend the asymptotic normality of𝑈𝑛 first obtained in the parametric regime (𝑠 > 1/4) in
Giné and Nickl (2008) to the non-regular regime (𝑠 ≤ 1/4). We collect this result in Corollary 2.4
and prove it formally in Section A.2. of the Supplementary Material. In addition to Assumption
OB, we suppose again that Assumption K and Assumption D(𝑠) hold for some 𝑠 > 0.

Assumption OB. Given Assumption D(𝑠) for some 𝑠 > 0, the bandwidth sequence ℎ𝑛 satisfies

0 < ℎ𝑛 = 𝐶𝑛−
2

4𝑠+1 .

for some constant 𝐶 > 0.

Corollary 2.4. Suppose that the bandwidth sequence ℎ𝑛 satisfies Assumption OB.
1. If 𝑠 > 1/4, then

√
𝑛(𝑈𝑛 − 𝜃0) ⇝ 𝑁 (0, 4𝜎2

𝐿).

2. If 𝑠 = 1/4, then
√
𝑛(𝑈𝑛 − E [𝑈𝑛]) ⇝ 𝑁

(
0, 4𝜎2

𝐿 + 2
𝐶
𝜎2
𝑊

)
.

3. If 𝑠 < 1/4, then √︄(
𝑛

2

)
ℎ𝑛 (𝑈𝑛 − E [𝑈𝑛]) ⇝ 𝑁 (0, 𝜎2

𝑊 ).

Remark 2.3. Under Assumption OB, the bias of 𝑈𝑛 is negligible when 𝑠 > 1/4, and so the weak
limit can be centered at the true value 𝜃0 in this case. When 𝑠 ≤ 1/4, the estimator is not necessarily
unbiased, since then we only have

√
𝑛𝐵𝑛 = 𝑂 (1) and

√︃(𝑛
2
)
ℎ𝑛𝐵𝑛 = 𝑂 (1) by the bias result in Giné

and Nickl (2008) – see Section D of the Supplementary Material. The asymptotic negligibility of
the bias when 𝑠 ≤ 1/4 can still be obtained from Corollary 2.2 by changing the bandwidth sequence
in Assumption OB to a sub-optimal under-smoothed one. This is made explicit and leveraged in
next section when we consider the problem of inference in the case 𝑠 ≤ 1/4.

Remark 2.4. The proof is of interest for the theory of second-order U-statistics with 𝑛-dependent
kernels. We show, indeed, that it is possible by following the more traditional approach of Hall
(1984) generalized in the central limit theorem of de Jong (1987) to recover weak convergence
results that are qualitatively similar to those obtained in Robins, Li, Tchetgen Tchetgen, and van der
Vaart (2016) in the sense that they can be expressed in terms of the smoothness of the nuisance
parameter. This connection is possible in virtue of the moment bounds we obtained for 𝑈𝑛 from
the integrability of the nuisance parameter and not its smoothness. This is an essential difference
with the previous results on U-statistics with 𝑛-dependent kernels that used de Jong (1987) – see,
for instance, Hardle and Mammen (1993) and Cattaneo, Crump, and Jansson (2014b).
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3 Semi-parametric inference in the non-regular regime

In this section, we tackle the problem of inference for the integrated square of a density
using the estimator 𝑈𝑛 of Giné and Nickl (2008) and its extended asymptotic normality proved in
Section 2. The results we obtain not only extend the ranges of cases for which it is possible to
quantify uncertainty around an optimal estimator of

∫
R
𝑓 2
0 (𝑥) 𝑑𝑥 but also provides the first example

in the literature of a semi-parametric problem where inference is possible in spite of an infinite-
dimensional non-smooth nuisance parameter. We recover, moreover, many standard inferential
results for second-order U-statistics with 𝑛-dependent kernels but in a low-regularity setting.

The idea is to start from the primitive weak limit derived in Corollary 2.2 with the hope of
extending the range of valid inference from cases when the linear term of𝑈𝑛 dominates (𝑛ℎ𝑛 → ∞)
to cases when the quadratic term of 𝑈𝑛 dominates (𝑛ℎ𝑛 → 0 provided 𝑛2ℎ𝑛 → ∞). For this
approach to be valid, we first need to ensure asymptotic negligibility of the bias. From Remark 2.3,
this is seen to hold under two different sets of conditions compatible with 𝑛2ℎ𝑛 → ∞, either:

Assumption NB1. Assumption D(𝑠) holds with 𝑠 > 1/4 and the bandwidth sequence satisfies
𝑛ℎ4𝑠

𝑛 → 0;

or:

Assumption NB2. Assumption D(𝑠) holds with 𝑠 ≤ 1/4 and the bandwidth sequence satisfies
𝑛ℎ

2𝑠+ 1
2

𝑛 → 0.

We can then consider using result 3 in Corollary 2.3 for inference under two new sets of non-regular
cases corresponding to Assumption NB1 and Assumption NB2, respectively:

(A) the density is regular enough (𝑠 > 1/4) and the estimator belongs to a wide class of under-
smoothed estimators (with bandwidths from 𝑛ℎ𝑛 → 0 to 𝑛2ℎ𝑛 → ∞);

(B) the density is irregular (𝑠 ≤ 1/4) and the estimator belongs to a slightly narrower class of
under-smoothed estimators (with bandwidths from 𝑛ℎ

2𝑠+ 1
2

𝑛 → 0 to 𝑛2ℎ𝑛 → ∞).

For either of these two cases, the non-regular asymptotic normality corresponding to result 3
in Corollary 2.3 can be used for inference since in each case we both have that 𝑛ℎ𝑛 → 0 and
𝑛ℎ

2𝑠+ 1
2

𝑛 → 0. Under this non-regular regime, we start by showing that it is possible to construct
a simple leave-one-out estimator of the variance that is consistent – see Proposition 3.1. We then
prove that the plug-in variance estimator is inconsistent in this case but that consistency can be
restored by appropriate bias-correction – see Proposition 3.2 and Proposition 3.3. We finally derive
the failure of the non-parametric bootstrap in this non-regular regime – see Proposition 3.4.

Remark 3.1. Because Assumption NB1 is also compatible with results 1 and 2 of Corollary 2.3
(when 𝑛ℎ𝑛 → 𝐶 ∈ (0, +∞]) while Assumption NB2 is not as explained in Remark 2.3, we should
work under Assumption NB1 in the rest of this section for additional generality: it allows us,
indeed, to consider the cases when 𝑛ℎ𝑛 → ∞ and when 𝑛ℎ𝑛 → 𝐶 ∈ (0, +∞) while Assumption
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NB2 does not. It is important to note, however, that all the results we derive in this section for the
non-regular case (A) under Assumption NB1 (that is, when 𝑛ℎ𝑛 → 0) hold equivalently for the
non-regular case (B) under NB2 since in both cases we have 𝑛ℎ𝑛 → 0 and 𝑛ℎ2𝑠+ 1

2
𝑛 → 0 and so

result 3 in Corollary 2.3 can be used.

Remark 3.2. The results in this section directly extend the range of cases where valid inference
for

∫
R
𝑓 2
0 (𝑥) 𝑑𝑥 can be performed. Under case (B), inference is possible when the density is

known to be irregular (𝑠 ≤ 1/4): we believe this is the first example in the literature of a semi-
parametric problem where inference is possible in spite of an infinite-dimensional non-smooth
nuisance parameter. Under case (A), inference can also be performed when the density is known
to be regular (𝑠 > 1/4) and the estimator is under-smoothed; because inference remains valid
under the same rules when the bandwidth is optimal, we obtain inferential rules robust to hyper-
parameter selection when the density is known to be regular. A similar motivation for robustness
to "small bandwidth" can be found in Cattaneo, Crump, and Jansson (2014b) for a different smooth
functional. In their problem, there is no counterpart to case (A) because their results are only valid
when their nuisance parameter is highly regular.

Remark 3.3. The results in this section also contribute to the theory of U-statistics with 𝑛-dependent
kernels from the inferential side. We not only recover the qualitative features exhibited previously
in Hardle and Mammen (1993) and Cattaneo, Crump, and Jansson (2014b,a) but do so in a
low-regularity setting. We construct, moreover, a leave-one-out variance estimator whose simple
structure may be appropriately leveraged in similar problems.

3.1 A simple consistent leave-one-out variance estimator

We show in this subsection how to construct an estimator of Var𝑈𝑛 that remains consistent in
the non-regular regime corresponding to either case (A) or case (B). As made clear in Remark 3.1,
we should work for additional generality under Assumption NB1: this allows us to consider both
regular and non-regular inference together. The consistency in the non-regular regime, however,
is valid both under Assumption NB2 and case (B) and under Assumption NB1 and case (A).

The main idea behind our estimator is inspired by the variance estimator in Cattaneo, Crump,
and Jansson (2014b). The main difference is that we carefully unpack all the terms in the expansion
leading to a simpler estimator that could be applied to other inferential problems with second-order
U-statistics with 𝑛-dependent kernels. The cost of this simpler estimator is a more complicated
proof. Based on Equation (1.3), Equation (1.4), and the results in Lemma 2.1 and Lemma 2.2, it
is natural to consider the estimators

𝜎2
𝐿
=𝑛−1

𝑛∑︁
𝑖=1

(
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=1
𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)

−
((
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
)2
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and

𝜎2
𝑊

= ℎ𝑛

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2.

Then, based on Equation (1.2), it is natural to consider the estimator of Var𝑈𝑛 given by

𝑉𝑛 = 4𝑛−1𝜎2
𝐿
+

(
𝑛

2

)−1
ℎ−1
𝑛 𝜎2

𝑊
.

We show that this estimator is consistent for the asymptotic variance. Given the characterization
of Var𝑈𝑛

Var𝑈𝑛 = 4𝑛−1
(
𝜎2
𝐿 + 𝑜(1)

)
+

(
𝑛

2

)−1
ℎ−1
𝑛

(
𝜎2
𝑊 + 𝑜(1)

)
,

the proof of the consistency of 𝑉𝑛 follows directly from the lemma stated below. The proof of this
lemma is long and is relegated to Section A.3. of the Supplementary Material.

Lemma 3.1. If 𝑛2ℎ𝑛 → ∞, then:
1.

𝜎2
𝐿
= 𝜎2

𝐿 + 𝑜𝑃 (1);

2.
𝜎2
𝑊

= 𝜎2
𝑊 + 𝑜𝑃 (1).

Proposition 3.1. If 𝑛2ℎ𝑛 → ∞, then

𝑉
−1/2
𝑛 (𝑈𝑛 − 𝜃0) ⇝ 𝑁 (0, 1)

with

𝑉𝑛 = 4𝑛−1𝜎2
𝐿
+

(
𝑛

2

)−1
ℎ−1
𝑛 𝜎2

𝑊
.

Proof. This follows directly from Lemma 3.1, the characterization of Var𝑈𝑛 in Equation (A.1),
and an application of Slutsky’s theorem in Corollary 2.3. □

Remark 3.4. The form of 𝜎2
𝐿

stems from the moment characterization

𝑛Var 𝐿𝑛 = E [𝑢1
𝑛 (𝑋1)2] − E [𝑢1

𝑛 (𝑋1)]2.

The first term in the estimator 𝜎2
𝐿

is then a leave-one-out bias-corrected estimator of the plug-in
estimator for E [𝑢𝑛 (𝑋1)2]. Indeed, we have that

𝑛−1
𝑛∑︁
𝑖=1

(
(𝑛 − 1)−1

𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 ,𝑋 𝑗)
)2

= 𝑛−1
𝑛∑︁
𝑖=1

(𝑛 − 1)−2
𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2

+ 2𝑛−1
𝑛∑︁
𝑖=1

(𝑛 − 1)−2
𝑛−1∑︁
𝑗=1
𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘).
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The first term is the one contributing to 𝜎2
𝑊

under 𝑛ℎ𝑛 → 0, while the second term is the
one contributing to 𝜎2

𝐿
under 𝑛ℎ𝑛 → ∞. This justifies the form of the first term in 𝜎2

𝐿
. For

completeness, we show that the first term

�𝜎2
𝐿𝑊

= 𝑛−1
𝑛∑︁
𝑖=1

(𝑛 − 1)−2
𝑛∑︁

𝑗=1 𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2

is the one contributing to 𝜎2
𝑊

when 𝑛ℎ𝑛 → 0. To see this, note that E [𝑛−1 ∑𝑛
𝑖=1(𝑛 −

1)−2 ∑𝑛
𝑗=1 𝑗≠𝑖 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2] = (𝑛 − 1)−1E [𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2]. Then

E

[���𝑛ℎ𝑛𝑛−1
𝑛∑︁
𝑖=1

(𝑛 − 1)−2
𝑛∑︁

𝑗=1, 𝑗≠𝑖
𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 − 𝑛ℎ𝑛 (𝑛 − 1)−1E [𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2]

���2]
= ℎ2

𝑛𝑛
2(𝑛 − 1)−2Var

((
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2
)

= 𝑂 (𝑛−2ℎ−1
𝑛 + 𝑛−1),

where the last equality follows from the bounds derived in Section C of the Supplementary Material.
We conclude by 𝐿2-convergence that

𝑛ℎ𝑛𝑛
−1

𝑛∑︁
𝑖=1

(𝑛 − 1)−2
𝑛∑︁

𝑗=1 𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 = 𝜎2
𝑊 + 𝑜𝑃 (1).

3.2 Inconsistency of the plug-in variance estimator

We show in this subsection that the plug-in variance estimator is inconsistent in the non-regular
regime corresponding either to case (A) or to case (B). As in the previous section, we should work
for additional generality under Assumption NB1 and its corresponding case (A), but the same
remark applies for the validity of the result under Assumption NB2 and case (B) – see Remark 3.1.

Consider then the following plug-in estimators

𝜎2
𝐿
= 𝑛−1

𝑛∑︁
𝑖=1

𝑙̂𝑛,𝑖
2, (3.1)

𝜎2
𝑊

= ℎ𝑛

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑤𝑛,𝑖, 𝑗
2, (3.2)
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with

𝑢0
𝑛 =

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗), (3.3)

𝑙̂𝑛,𝑖 = (𝑛 − 1)−1
𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) − 𝑢0
𝑛, (3.4)

𝑤𝑛,𝑖, 𝑗 = 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) − 𝑙̂𝑛,𝑖 − 𝑙̂𝑛, 𝑗 + 𝑢0
𝑛. (3.5)

We first collect in the following lemmas the limits in probability of the estimators 𝜎2
𝐿

and
𝜎2
𝑊

for a whole range of bandwidth sequence rates. These limits are then directly used to show
consistency and inconsistency of different (rescaled) plug-in variance estimators. The proofs of
these lemmas are relegated to Section A.4. of the Supplementary Material.

Lemma 3.2.
1. If 𝑛ℎ𝑛 → ∞, then

𝜎2
𝐿
= 𝜎2

𝐿 + 𝑜𝑃 (1).

2. If 𝑛ℎ𝑛 → 𝐶 ∈ (0,∞), then

𝑛−1𝜎2
𝐿
= 𝑛−1

(
𝜎2
𝐿 + 2

𝐶
𝜎2
𝑊 + 𝑜𝑃 (1)

)
.

3. If 𝑛2ℎ𝑛 → ∞ and 𝑛ℎ𝑛 → 0, then

𝑛−1𝜎2
𝐿
=

(
𝑛

2

)−1
ℎ−1
𝑛

(
𝜎2
𝑊 + 𝑜𝑃 (1)

)
Lemma 3.3. If 𝑛2ℎ𝑛 → ∞, then

𝜎2
𝑊

= 𝜎2
𝑊 + 𝑜𝑃 (1).

Recall again the characterization of Var𝑈𝑛 given by

Var𝑈𝑛 = 4𝑛−1
(
𝜎2
𝐿 + 𝑜(1)

)
+

(
𝑛

2

)−1
ℎ−1
𝑛

(
𝜎2
𝑊 + 𝑜(1)

)
.

Then it follows directly from the two previous lemmas that the plug-in estimator

𝑉̂𝑛,𝑝 = 4𝑛−1𝜎2
𝐿
+

(
𝑛

2

)−1
ℎ−1
𝑛 𝜎2

𝑊

is consistent when the linear term dominates but inconsistent otherwise. However, it is possible to
construct a rescaled version

𝑉̂𝑛,𝑟 = 4𝑛−1𝜎2
𝐿
− 3

(
𝑛

2

)−1
ℎ−1
𝑛 𝜎2

𝑊
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which is directly seen to be consistent in all cases. These results are summarized in the next
propositions.

Proposition 3.2. If 𝑛ℎ𝑛 → 0 and 𝑛2ℎ𝑛 → ∞, then

𝑉̂𝑛,𝑝 − 3Var𝑈𝑛 = 𝑜𝑝 (1)

with

𝑉̂𝑛,𝑝 = 4𝑛−1𝜎2
𝐿
+

(
𝑛

2

)−1
ℎ−1
𝑛 𝜎2

𝑊
.

Proof. This follows directly from Lemma 3.2 and Lemma 3.3 and the characterization of Var𝑈𝑛

in Equation (A.1). □

Proposition 3.3. If 𝑛2ℎ𝑛 → ∞, then

𝑉̂
−1/2
𝑛,𝑟 (𝑈𝑛 − 𝜃0) ⇝ 𝑁 (0, 1)

with

𝑉̂𝑛,𝑟 = 4𝑛−1𝜎2
𝐿
− 3

(
𝑛

2

)−1
ℎ−1
𝑛 𝜎2

𝑊
.

Proof. This follows directly from Lemma 3.2 and Lemma 3.3, the characterization of Var𝑈𝑛 in
Equation (A.1), and an application of Slutsky’s theorem in Corollary 2.3. □

Remark 3.5. The estimator introduced in Section 3.1 is directly seen to correct the deficiency of
the plug-in variance estimator. There exists another method to restore consistency of the plug-in
variance estimator, which is also considered in Cattaneo, Crump, and Jansson (2014b). It consists
in estimating the variance with a bandwidth sequence 𝐻𝑛 converging at a different rate than the
bandwidth sequence ℎ𝑛 used to estimate 𝜃0. The validity of the method follows directly from
Lemma 3.2 by taking 𝐻𝑛 in the estimation of 𝜎2

𝐿
such that 𝑛𝐻𝑛 → ∞. In this case, the plug-in

estimator with double bandwidth sequences is directly seen to be consistent without rescaling.

3.3 Inconsistency of the non-parametric bootstrap

We finally show that the non-parametric bootstrap fails to reproduce the underlying distribution
in the non-regular regime corresponding to either case (A) or case (B). We should again work under
Assumption NB1 and the associated non-regular case (A), but the same remark for the validity
under Assumption NB2 and case (B) still holds – see Remark 3.1.

Remark 3.6. The bootstrap failure for our problem is directly reminiscent of those reported in
Hardle and Mammen (1993) and Cattaneo, Crump, and Jansson (2014a). The same underlying
mechanism explains the failure in spite of asymptotic normality – it can already be seen from the
previous results where we had to "manually" rescale the variance of the quadratic term to obtain
a consistent estimator of Var𝑈𝑛. Sensibly similar issues and solutions were already reported on
jackknife estimate of variance for U-statistics – see Efron and Stein (1981).
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Let X𝑛 = {𝑋1, 𝑋2, . . . , 𝑋𝑛} be an i.i.d. sample. Then take X ∗
𝑛 = {𝑋∗

1 , 𝑋
∗
2 , . . . , 𝑋

∗
𝑛} an

i.i.d. sample from the empirical distribution P𝑛 based on X𝑛. Equivalently, X ∗ can be obtained
by uniformly sampling 𝑛 times from X𝑛 with replacement. Denote by 𝑃∗,E ∗,Var∗, cov∗, the
probability, expectation, variance, and covariance taken with respect to the empirical distribution
conditional on X𝑛. We introduce the bootstrap analogue to the estimator previously introduced

𝑈∗
𝑛 =

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

1
ℎ𝑛
𝐾

(
𝑋∗
𝑖
− 𝑋∗

𝑗

ℎ𝑛

)
=

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋∗
𝑖 , 𝑋

∗
𝑗 ).

The statistics 𝑈∗
𝑛 is the same second-order U-statistics with 𝑛-dependent kernel 𝑘𝑛 as 𝑈𝑛 but

computed over the random sample X ∗
𝑛 instead of X𝑛. Note that conditional on X𝑛, the empirical

distribution is a discrete (non-random) distribution, namely, multinomial with uniform weights 1/𝑛.
It follows that the statistics 𝑈∗

𝑛 admits a Hoeffding decomposition with respect to the empirical
distribution conditional on X𝑛. In virtue of Lemma 1.1, we have

𝑈∗
𝑛 = E ∗ [𝑈∗

𝑛] + 2𝐿∗𝑛 +𝑊∗
𝑛

with

𝐿∗𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

[
𝑢1∗
𝑛 (𝑋∗

𝑖 ) − 𝑢0∗
𝑛

]
𝑊∗

𝑛 =

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

[
𝑢2∗
𝑛 (𝑋∗

𝑖 , 𝑋
∗
𝑗 ) − 𝑢1∗

𝑛 (𝑋∗
𝑖 ) − 𝑢1∗

𝑛 (𝑋∗
𝑗 ) + 𝑢0∗

𝑛

]

and

𝑢0∗
𝑛 = E ∗ [𝑈∗

𝑛]

𝑢1∗
𝑛 (𝑋∗

𝑖 ) = E ∗ [𝑘𝑛 (𝑋∗
𝑖 , 𝑋

∗
𝑗 ) |𝑋∗

𝑖 ]

𝑢2∗
𝑛 (𝑋∗

𝑖 , 𝑋
∗
𝑗 ) = 𝑘𝑛 (𝑋∗

𝑖 , 𝑋
∗
𝑗 )

where 𝑖 ≠ 𝑗 are any two indexes.
By Lemma 1.2, we have

Var∗𝑈∗
𝑛 =

4
𝑛

Var∗(𝑢1∗
𝑛 (𝑋1)) +

2
𝑛(𝑛 − 1)Var∗(𝑢2∗

𝑛 (𝑋1, 𝑋2) − 𝑢1∗
𝑛 (𝑋1) − 𝑢1∗

𝑛 (𝑋2)).

Moreover, for the same reason as in the proof of Lemma 1.2, we also have

Var∗𝑈∗
𝑛 =

4
𝑛

Var∗(𝑢1∗
𝑛 (𝑋1)) +

2
𝑛(𝑛 − 1)

[
Var∗(𝑢2∗

𝑛 (𝑋1, 𝑋2)) − Var∗(𝑢1∗
𝑛 (𝑋1))

]
.

Then to compute Var∗𝑈∗
𝑛, we make use of the multinomial representation of the empirical
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measure conditional on the observed sample. Similar computations have been used repeatedly
when bootstrapping U-statistics (be they with standard kernels or 𝑛-dependent kernels), see, for
instance, Dehling and Mikosch (1994) or Cattaneo, Crump, and Jansson (2014a). In particular,
note that 𝑢1∗

𝑛 (𝑋∗
𝑖
) can be rewritten as

𝑢1∗
𝑛 (𝑋∗

𝑖 ) = E Ξ [𝑘𝑛 (𝜉𝑖 (𝑋1, . . . , 𝑋𝑛), 𝜉 𝑗 (𝑋1, . . . , 𝑋𝑛)) |𝜉𝑖 , 𝑋1, 𝑋2, . . . , 𝑋𝑛]

where Ξ is the multimomial distribution with uniform weights and 𝜉1, 𝜉2, . . . , 𝜉𝑛 is an i.i.d. sample
from this distribution, and so it follows that

𝑢1∗
𝑛 (𝑋∗

𝑖 ) =
1
𝑛

𝑛∑︁
𝑗=1

𝑘𝑛 (𝑋∗
𝑖 , 𝑋 𝑗).

Then we have

𝑢0∗
𝑛 = E ∗ [𝑢1∗

𝑛 (𝑋∗
𝑖 )] =

1
𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) =
𝑛 − 1
𝑛

𝑈𝑛.

Additional moment calculations then lead to the following result, which yields inconsistency of
the bootstrap variance whenever linearity subsides. The proof can be found in Section A.5. of the
Supplementary material.

Proposition 3.4. If 𝑛2ℎ𝑛 → ∞, then

Var∗𝑈∗
𝑛 − 4𝑛−1𝜎2

𝐿 − 3
(
𝑛

2

)−1
ℎ−1
𝑛 𝜎2

𝑊 = 𝑜𝑃 (1).

In particular, if 𝑛ℎ𝑛 → 0, then

Var∗𝑈∗
𝑛 − 3Var𝑈𝑛 = 𝑜𝑃 (1).

This proves the inconsistency of the bootstrap variance. However, inconsistency of the bootstrap
variance is not generally sufficient for inconsistency of the bootstrap distribution. To see that it holds
in this case, suppose by contradiction that

(𝑛
2
)1/2

ℎ
1/2
𝑛 (𝑈∗

𝑛 − 𝑛−1
𝑛
𝑈𝑛) ⇝ 𝑁 (0, 𝜎2

𝑊
) in probability.

Then the fact that Var∗𝑈∗
𝑛 − 4𝑛−1𝜎2

𝐿
− 3

(𝑛
2
)−1

ℎ−1
𝑛 𝜎2

𝑊
= 𝑜𝑃 (1) is enough to ensure uniform

integrability and convergence of second moments, as in Lemma 2.1. in Kato (2011) which extends
Theorem 4.5.2. in Chung (2001) to conditional distributions. Then lim𝑛→∞

(𝑛
2
)
ℎ𝑛Var∗𝑈∗

𝑛 = 𝜎2
𝑊

in probability, a contradiction.

Remark 3.7. Given the nature of bootstrap failure in this problem, there is a number of natural
potential candidates to restore consistency. The first ones are those in Cattaneo, Crump, and Jansson
(2014a), respectively subsampling and bootstrapping the studentized statistics for the consistent
variance estimator. A second set of solutions is based on recentering the kernel of the U-statistics
in the bootstrap world, or equivalently adjusting the random sampling weights – see Arcones and
Gine (1992) and Dehling and Mikosch (1994). Other reweighing solutions based on a martingale
representation of the estimator in the spirit of Otsu and Rai (2017), extending the wild bootstrap
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in Hardle and Mammen (1993), can also be investigated. A last set of candidates is based on the
smoothed bootstrap where resampling is not based on a (conditional) discrete distribution, but a
continuous one. Assessing the validity of these bootstrap methods is left for future research.
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Supplementary Material for "Integrated square of a density:
asymptotic normality and non-regular semi-parametric inference"

Paul Delatte

The Supplementary Material to "Integrated square of a density: asymptotic normality and
non-regular semi-parametric inference" contains four sections. The first section (A) contains most
of the proofs of the results found in the main text. The second section (B) states and proves
a result based on a density argument extending 𝐿1-continuity. The third section (C) contains
additional bounds on the moments of some U-statistics that appear in Section A. The last section
(D) reproduces and comments on the bias result in Giné and Nickl (2008).

A Proofs

A.1 Proof of the moment bounds of𝑈𝑛

Proof of Lemma 2.3. 1. By change of variable, we have

E [|𝑢1
𝑛 (𝑋𝑖) |𝑞] =

∫
R

���� ∫
R
𝐾ℎ (𝑢) 𝑓0(𝑥 − 𝑢) 𝑑𝑢

����𝑞 𝑓0(𝑥) 𝑑𝑥.
Since 𝑓 ∈ 𝐿𝑞, we conclude using the mollification theorem and continuity of the norm.

2. By change of variable and Fubini’s theorem, we have

E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑞] =

1
ℎ𝑞−1

∫
R
|𝐾 (𝑢) |𝑞

∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢,

and since 𝐾 ∈ 𝐿𝑞, we conclude by using Lemma B.1 and dominated convergence.
3. By Holder’s inequality, we have

E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑢1

𝑛 (𝑋𝑖) |𝑞] ≤ (E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗)2𝑟 ]E [|𝑢1

𝑛 (𝑋𝑖) |2𝑞])1/2

and we conclude directly by using (1.) and (2.).
4. By change of variable and Fubini’s theorem, we have

E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑢2

𝑛 (𝑋𝑖 , 𝑋𝑘) |𝑞]

=

∫
R

∫
R
|𝐾ℎ (𝑥 − 𝑦) |𝑟 𝑓0(𝑦) 𝑑𝑦

∫
R
|𝐾ℎ (𝑥 − 𝑧) |𝑞 𝑓0(𝑧) 𝑑𝑧 𝑓0(𝑥) 𝑑𝑥

=
1

ℎ𝑟+𝑞−2

∫
R

∫
R
|𝐾 (𝑢) |𝑟 |𝐾 (𝑣) |𝑞

∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥 − 𝑤ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢 𝑑𝑣

and we conclude by using the extension of Lemma B.1 and dominated convergence. □
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Proof of Lemma 2.4. 5. It suffices to show that

E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑢2

𝑛 (𝑋𝑖 , 𝑋𝑘) |𝑞 |𝑢2
𝑛 (𝑋 𝑗 , 𝑋𝑘) |𝑡 ] = 𝑂 (ℎ−𝑟−𝑞−𝑡+2).

The result then obtains by induction on 𝑙, using either independence, result (4.), or this result. By
using the same change of variable as in (4.), we directly obtain that

E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑢2

𝑛 (𝑋𝑖 , 𝑋𝑘) |𝑞 |𝑢2
𝑛 (𝑋 𝑗 , 𝑋𝑘) |𝑡 ]

=
1

ℎ𝑟+𝑞−2

∫
R

∫
R

1
ℎ𝑡

|𝐾 (𝑢 − 𝑣) |𝑡 |𝐾 (𝑢) |𝑟 |𝐾 (𝑣) |𝑞
∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥 − 𝑤ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢 𝑑𝑣

≤ ||𝐾 | |∞
ℎ𝑟+𝑞+𝑡−2

∫
R

∫
R
|𝐾 (𝑢) |𝑟 |𝐾 (𝑣) |𝑞

∫
R
𝑓0(𝑥 − 𝑢ℎ) 𝑓0(𝑥 − 𝑤ℎ) 𝑓0(𝑥) 𝑑𝑥 𝑑𝑢 𝑑𝑣

and we can conclude as in (4.).
6. This follows directly from Holder’s inequality, independence, (5.) and (1.) as in (3.). □

Proof of Lemma 2.5. 1. We have 𝑙 (𝑋𝑖) = 𝑢1
𝑛 (𝑋𝑖)−𝑢0

𝑛 = 𝑢1
𝑛 (𝑋𝑖)−E [𝑢1

𝑛 (𝑋𝑖)], henceE [|𝑙 (𝑋𝑖) |𝑞] ≤
𝐶 (𝑞)E [|𝑢1

𝑛 (𝑋𝑖) |𝑞], and we conclude by Lemma 2.3.
2. If 𝑞 = 1, the result follows from the triangle inequality and Lemma 2.2. Suppose now

𝑞 ≥ 2. By the multinomial theorem and Lemma 2.3, the term that dominates asymptotically
is E [|𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑞] = 𝑂 (ℎ−𝑞+1), since E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑞−1 |𝑢1

𝑛 (𝑋𝑖) |] = 𝑂 (ℎ−𝑞+3/2) and all other
terms are of lower order. This concludes the proof.

3. If 𝑟 = 𝑞 = 1, the result follows from the triangle inequality and Lemma 2.3. Suppose
now w.l.o.g. that 𝑟 > 1. By the multinomial theorem and Lemma 2.4 with 𝑙 = 3, the only
two terms that can dominate asymptotically are E [|𝑢2

𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟 |𝑢2
𝑛 (𝑋𝑖 , 𝑋𝑘) |𝑞] = 𝑂 (ℎ−𝑟−𝑞+2) and

E [|𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) |𝑟−1 |𝑢2

𝑛 (𝑋𝑖 , 𝑋𝑘) |𝑞 |𝑢1
𝑛 (𝑋𝑖) |] = 𝑂 (ℎ−𝑟+1−𝑞+ 3−1

2 ) = 𝑂 (ℎ−𝑟−𝑞+2), since all the other
terms are of lower order. This concludes the proof.

4. The same argument generalizes by induction on 𝑙, as there are always only two terms in the
multinomial expansions that can dominate asymptotically. □

A.2 Proof of the weak limits

Proof of Proposition 2.1. For simplicity, we write ℎ = ℎ𝑛. To directly apply the results of de Jong
(1987) and Eubank and Wang (1999), we recall and introduce some notations

𝑙 (𝑋𝑖) = 𝑢1
𝑛 (𝑋𝑖) − 𝑢0

𝑛,

𝑤(𝑋𝑖 , 𝑋 𝑗) = 𝑢2
𝑛 (𝑋𝑖 , 𝑋 𝑗) − 𝑢1

𝑛 (𝑋𝑖) − 𝑢1
𝑛 (𝑋 𝑗) + 𝑢0

𝑛,

and

𝐿𝑖 = 𝑛
−1/2𝑙 (𝑋𝑖) and 𝑊𝑖, 𝑗 =

(
𝑛

2

)−1/2
ℎ1/2𝑤(𝑋𝑖 , 𝑋 𝑗)
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for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 . From there, it follows that

√
𝑛𝐿𝑛 =

𝑛∑︁
𝑖=1

𝐿𝑖 =: 𝐿 (𝑛) and

√︄(
𝑛

2

)
ℎ𝑊𝑛 =

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑊𝑖, 𝑗 =: 𝑊 (𝑛).

In particular, Var(
√
𝑛𝐿𝑛) = 𝑂 (1) and Var(

√︃(𝑛
2
)
ℎ𝑊𝑛) = 𝑂 (1), so

Var
(√
𝑛𝐿𝑛 +

√︄(
𝑛

2

)
ℎ𝑊𝑛

)
= 𝑂 (1),

and so, in all the Lyapunov-type conditions, the normalizing variances can be taken to be 1. The
conditions (1.3) to (1.6) in Eubank and Wang (1999) then rewrite as(

𝑛

2

)−1
ℎ max

1≤𝑖≤𝑛

𝑛∑︁
𝑗=1

Var(𝑤(𝑋𝑖 , 𝑋 𝑗)) → 0, (EW1.3)

E [𝑊 (𝑛)4]/(Var𝑊 (𝑛))2 → 3, (EW1.4)

𝑛−2
𝑛∑︁
𝑖=1
E [𝑙 (𝑋𝑖)4] → 0, (EW1.5)(

𝑛

2

)−1
𝑛−1ℎE

[( 𝑛∑︁
𝑖=2

𝑖−1∑︁
𝑗=1
E [𝑤(𝑋𝑖 , 𝑋 𝑗)𝑙 (𝑋𝑖) |𝑋1, . . . , 𝑋𝑖−1]

)2]
→ 0. (EW1.6)

The i.i.d. assumption allows us to considerably simplifies those expressions. In particular, the
conditions above are equivalent to

𝑛−1ℎVar(𝑤(𝑋1, 𝑋2)) → 0, (EW1.3bis)

E [𝑊 (𝑛)4]/(Var𝑊 (𝑛))2 → 3, (EW1.4)

𝑛−1E [𝑙 (𝑋1)4] → 0, (EW1.5bis)

𝑛−1ℎVar
(
E [𝑤(𝑋2, 𝑋1)𝑙 (𝑋2) |𝑋1]

)
→ 0. (EW1.6bis)

The last equivalence follows from E [𝑋2] = Var(𝑋) + E [𝑋]2 and E [𝑤(𝑋𝑖 , 𝑋 𝑗)𝑙 (𝑋𝑖)] = 0. To
handle (EW1.4), we make use of the expansion of E [𝑊 (𝑛)4] in Table 1 in de Jong (1987). In par-
ticular, using the notations of de Jong (1987), it follows from our normalization that (EW1.4) holds
whenever the terms 𝐺I, 𝐺II, 𝐺III, 𝐺IV tend to zero and the term 𝐺V is asymptotically equivalent
to (Var(𝑊 (𝑛))2/2. Using the i.i.d. assumption and our notations, this reduces to the following
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conditions

𝑛−2ℎ2E [𝑤(𝑋1, 𝑋2)4] → 0 (dJ.𝐺I)

𝑛−1ℎ2E [𝑤(𝑋1, 𝑋2)2𝑤(𝑋1, 𝑋3)2] → 0 (dJ.𝐺II)

𝑛−1ℎ2E [𝑤(𝑋1, 𝑋2)2𝑤(𝑋1, 𝑋3)𝑤(𝑋3, 𝑋2)] → 0 (dJ.𝐺III)

ℎ2E [𝑤(𝑋1, 𝑋2)𝑤(𝑋1, 𝑋3)𝑤(𝑋4, 𝑋2)𝑤(𝑋4, 𝑋3)] → 0 (dJ.𝐺IV)

ℎE [𝑤(𝑋1, 𝑋2)2]/Var(𝑊 (𝑛)) → 1 (dJ.𝐺V)

where the last equivalence follows from 3
(𝑛
4
) (𝑛

2
)−2 ∼ 1/2. We now use Lemma 2.5 to prove that

all limits are as given. For (EW1.3bis), we have

Var𝑤(𝑋1, 𝑋2) ≤ 𝐸 [𝑤(𝑋1, 𝑋2)2] = 𝑂 (ℎ−1),

hence the result. For (dJ.𝐺I), we have

𝐸 [𝑤(𝑋1, 𝑋2)4] = 𝑂 (ℎ−3),

and so the result follows since 𝑛2ℎ → ∞. For (dJ.𝐺II),

E [𝑤(𝑋1, 𝑋2)2𝑤(𝑋1, 𝑋3)2] = 𝑂 (ℎ−2),

so the result follows. For (dJ.𝐺III), we have

E [𝑤(𝑋1, 𝑋2)2𝑤(𝑋1, 𝑋3)𝑤(𝑋3, 𝑋2)] = 𝑂 (ℎ−2),

so the result follows. For (dJ.𝐺IV), we have

E [𝑤(𝑋1, 𝑋2)𝑤(𝑋1, 𝑋3)𝑤(𝑋4, 𝑋2)𝑤(𝑋4, 𝑋3)] = 𝑂 (ℎ−3/2),

so the result follows since ℎ → 0. For (dJ.𝐺V), the result follows immediately from Lemma 2.2
and Lemma 2.5. For (EW1.5bis), we have

E [𝑙 (𝑋1)4] = 𝑂 (1),

so the result follows. For (EW1.6bis), we have

Var(E [𝑤(𝑋2, 𝑋1)𝑙 (𝑋2) |𝑋1]) ≤ E ((E [𝑤(𝑋2, 𝑋1)𝑙 (𝑋2) |𝑋1])2).

By monotonicity, conditional Holder’s inequality, and independence,

Var(E [𝑤(𝑋2, 𝑋1)𝑙 (𝑋2) |𝑋1]) ≤ E [𝑤(𝑋2, 𝑋1)] (E [𝑙 (𝑋2
2 )])

1/2 = 𝑂 (1),
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and so the result follows. This concludes the proof. □

Proof of Corollary 2.2. From Lemma 2.1 and Lemma 2.2 and Equation (1.2), we have

Var𝑈𝑛 = 4𝑛−1
(
𝜎2
𝐿 + 𝑜(1)

)
+

(
𝑛

2

)−1
ℎ−1
𝑛

(
𝜎2
𝑊 + 𝑜(1)

)
. (A.1)

In particular, (Var𝑈𝑛)−1/2 = 𝑂 (𝑛1/2 ∧ 𝑛ℎ1/2
𝑛 ). By distinguishing three cases if necessary, the

result then follows immediately from Equation (1.1), Slutsky’s theorem, Proposition 2.1, and the
normality of the marginals of bivariate normals. □

Proof of Corollary 2.3. 1. If 𝑛ℎ𝑛 → ∞, then (Var𝑈𝑛)−1/2 ∼ (4𝜎2
𝐿
)−1/2𝑛1/2. By Lemma D.1,

𝑛1/2(E [𝑈𝑛] − 𝜃0) = 𝑂 (𝑛1/2ℎ2𝑠) and so 𝑛1/2(E [𝑈𝑛] − 𝜃0) = 𝑜(1) since 𝑛ℎ4𝑠
𝑛 → 0. The result then

follows from Slutsky’s theorem and Corollary 2.2.
2. If 𝑛ℎ𝑛 → 𝐶 ∈ (0,∞), then (Var𝑈𝑛)−1/2 ∼ (4𝜎2

𝐿
+ 2

𝐶
𝜎2
𝑊
)−1/2𝑛1/2. As in (1.), since

𝑛ℎ4𝑠
𝑛 → 0, 𝑛1/2(E [𝑈𝑛] − 𝜃0) = 𝑜(1). The result follows again from Slutsky’s theorem and

Corollary 2.2.
3. If 𝑛ℎ𝑛 → 0, then (Var𝑈𝑛)−1/2 ∼ (𝜎2

𝑊
)−1/2ℎ1/2 (𝑛

2
)1/2. By Lemma D.1, ℎ1/2 (𝑛

2
)1/2(E [𝑈𝑛] −

𝜃0) = 𝑂 (𝑛ℎ2𝑠+1/2) and so 𝑛1/2(E [𝑈𝑛] − 𝜃0) = 𝑜(1) since 𝑛ℎ2𝑠+1/2 → 0. The result follows again
from Slutsky’s theorem and Corollary 2.2. □

Proof of Corollary 2.4. 1. If 𝑠 > 1/4, then 𝑛ℎ𝑛 = 𝐶𝑛
4𝑠−1
4𝑠+1 → ∞ and 𝑛ℎ4𝑠 = 𝐶𝑛

−4𝑠+1
4𝑠+1 → 0.

2. If 𝑠 = 1/4, then 𝑛ℎ𝑛 → 𝐶 ∈ (0,∞).
3. If 𝑠 < 1/4, then 𝑛ℎ𝑛 = 𝐶𝑛

4𝑠−1
4𝑠+1 → 0.

The results then follow directly from Corollary 2.2 as in the proof of Corollary 2.3. □

A.3 Proofs of the consistency of the simple variance estimator

Proof of Lemma 3.1. 1. We start with
(𝑛
2
)−1 ∑𝑛−1

𝑖=1
∑𝑛

𝑗=𝑖+1 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗). It is seen from an i.i.d.
argument that

E

[(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
]
= E [𝑘𝑛 (𝑋1, 𝑋2)] .

Then, again by i.i.d. and Lemma 2.3,

E

[���(𝑛2)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) − E [𝑘𝑛 (𝑋1, 𝑋2)]
���2] = Var

((
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
)

= Var𝑈𝑛 = 𝑂 (𝑛−1 + 𝑛−2ℎ−1).

By 𝐿2-convergence, it follows that(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) =
∫
R
𝑓0(𝑥) 𝑑𝑥 + 𝑜𝑃 (1).
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We now consider 𝑛−1 ∑𝑛
𝑖=1

(𝑛−1
2

)−1 ∑𝑛−1
𝑗=1, 𝑗≠𝑖

∑𝑛
𝑘= 𝑗+1, 𝑘≠𝑖 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘). It is seen

from an i.i.d. argument that

E

[
𝑛−1

𝑛∑︁
𝑖=1

(
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=1,
𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1,
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)
]
= E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3)] .

Note then by i.i.d. and the law of iterated expectation that

E [E [𝑘𝑛 (𝑋1, 𝑋2) |𝑋1]2] = E [E [𝑘𝑛 (𝑋1, 𝑋2) |𝑋1]E [𝑘𝑛 (𝑋1, 𝑋3) |𝑋1]]

= E [E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3) |𝑋1]]

= E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3)] .

Then

E

[���𝑛−1
𝑛∑︁
𝑖=1

(
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=1,
𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1,
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘) − E [E [𝑘𝑛 (𝑋1, 𝑋2) |𝑋1]2]
���2]

= Var
(
𝑛−1

𝑛∑︁
𝑖=1

(
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=1, 𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1, 𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)
)

= 𝑛−1Var
((
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

𝑘𝑛 (𝑋1, 𝑋 𝑗)𝑘𝑛 (𝑋1, 𝑋𝑘)
)

+ 𝑛−2𝑛(𝑛 − 1)
(
𝑛 − 1

2

)−2
cov

( 𝑛−1∑︁
𝑖=2

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗),
𝑛−1∑︁
𝑘=1
𝑘≠2

𝑛∑︁
𝑙=𝑘+1
𝑙≠2

𝑘𝑛 (𝑋2, 𝑋𝑘)𝑘𝑛 (𝑋2, 𝑋𝑙)
)

= 𝑛−1𝑅1 + 2𝑛−2
(
𝑛 − 1

2

)−1
𝑅2,

with

𝑅1 = Var
((
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

𝑘𝑛 (𝑋1, 𝑋 𝑗)𝑘𝑛 (𝑋1, 𝑋𝑘)
)
,

and

𝑅2 = cov
( 𝑛−1∑︁

𝑖=2

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗),
𝑛−1∑︁
𝑘=1
𝑘≠2

𝑛∑︁
𝑙=𝑘+1
𝑙≠2

𝑘𝑛 (𝑋2, 𝑋𝑘)𝑘𝑛 (𝑋2, 𝑋𝑙)
)
,

where the penultimate equality follows from expanding the variance around the sum and identical
distributions across 𝑖. In Lemma C.3, it is shown that

𝑅2 = 𝑂 (𝑛3 + 𝑛2ℎ−1
𝑛 + 𝑛ℎ−2

𝑛 ).
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For 𝑅1, note that by the law of total variance, we have

𝑅1 = 𝐴 + 𝐵

where

𝐴 = E

[
Var

((
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

𝑘𝑛 (𝑋1, 𝑋 𝑗)𝑘𝑛 (𝑋1, 𝑋𝑘)
���𝑋1

)]
,

𝐵 = Var
((
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

E [𝑘𝑛 (𝑋1, 𝑋 𝑗)𝑘𝑛 (𝑋1, 𝑋𝑘) |𝑋1]
)
.

Note that conditional on 𝑋1, the term within the variance in 𝐴 is a second-order U-statistics with
kernel 𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3), hence it admits a Hoeffding decomposition and its variance can be
bounded by standard argument. The quadratic term can be shown to be 𝑂 (𝑛−2ℎ−2

𝑛 ). The linear
term can be shown to be 𝑂 (𝑛−1). This is proved in Lemma C.1. Now, we analyze the term 𝐵. We
have

𝐵 = Var
((
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

E [𝑘𝑛 (𝑋1, 𝑋 𝑗)𝑘𝑛 (𝑋1, 𝑋𝑘) |𝑋1]
)

= Var
((
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

E [𝑘𝑛 (𝑋1, 𝑋2) |𝑋1]2
)

≤ E
[
E [𝑘𝑛 (𝑋1, 𝑋2) |𝑋1]4] = 𝑂 (1),

where the last equality follows from independence, the law of iterated expectation, and Lemma 2.4.
It follows that

𝑅1 = 𝑂 (1 + 𝑛−2ℎ−2
𝑛 + 𝑛−1),

and so

𝑛−1𝑅1 + 2𝑛−2
(
𝑛 − 1

2

)−1
𝑅2 = 𝑂 (𝑛−3ℎ−2

𝑛 + 𝑛−1 + 𝑛−2 + 𝑛−2ℎ−1
𝑛 )

By 𝐿2-convergence, it follows that, whenever 𝑛ℎ𝑛 → 𝐶 ∈ (0,∞], we have

𝑛−1
𝑛∑︁
𝑖=1

(
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=1, 𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1, 𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘) =
∫
R
𝑓0(𝑥)3 𝑑𝑥 + 𝑜𝑃 (1).

If 𝑛ℎ𝑛 → 0, the same argument shows that

𝑛ℎ𝑛𝑛
−1

𝑛∑︁
𝑖=1

(
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=1, 𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1, 𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘) = 𝑜𝑃 (1).

A double application of the continuous mapping theorem then yields the result.
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2. The proof operates with similar arguments. Note first that

E

[
ℎ𝑛

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2
]
= ℎ𝑛E

[
𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2] .

Then

E

[���ℎ𝑛 (𝑛2)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 − ℎ𝑛E [𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2]
���2] = ℎ2

𝑛Var
((
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2
)
.

Note that
(𝑛
2
)−1 ∑𝑛−1

𝑖=1
∑𝑛

𝑗=𝑖+1 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 is a second-order U-statistics with kernel 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2.
By Hoeffding decomposition and density arguments, its variance can be bounded in the same way
as the variance of𝑈𝑛. As proved in Lemma C.2, we can show that

Var
((
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2
)
= 𝑂 (𝑛−2ℎ−3

𝑛 ) +𝑂 (𝑛−1ℎ−2
𝑛 ).

We then have

E

[���ℎ𝑛 (𝑛2)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 − ℎ𝑛E [𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2]
���2] = 𝑂 (𝑛−2ℎ−1

𝑛 + 𝑛−1).

By 𝐿2-convergence, it follows that

ℎ𝑛

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 = 𝜎2
𝑊 + 𝑜𝑃 (1).

□

A.4 Proofs of the inconsistency of the plug-in variance estimator

Proof. We start by expanding 𝜎2
𝐿
. We have

𝜎2
𝐿
= 𝑛−1

𝑛∑︁
𝑖=1

(
(𝑛 − 1)−1

𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) − 𝑢0
𝑛

)2

= 𝑛−1(𝑛 − 1)−2
𝑛∑︁
𝑖=1

( 𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
)2

− 𝑢0
𝑛

(
𝑛

2

)−1 𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) + 𝑢0
𝑛

2

= 𝑛−1(𝑛 − 1)−2
𝑛∑︁
𝑖=1

( 𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
)2

− 𝑢0
𝑛

2
.
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We now expand the first term on the right-end side

𝑛−1(𝑛 − 1)−2
𝑛∑︁
𝑖=1

( 𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
)2

= 𝑛−1(𝑛 − 1)−2
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 + 2𝑛−1(𝑛 − 1)−2
𝑛∑︁
𝑖=1

𝑛−1∑︁
𝑗=1
𝑗≠𝑖

𝑛∑︁
𝑘= 𝑗+1
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)

= �𝜎2
𝐿𝑊

+ (𝑛 − 2) (𝑛 − 1)−1𝜎2
𝐿
.

The result then follows directly from Lemma 3.1 and Remark 3.4. □

Proof. We start by expanding 𝜎2
𝑊

. We have

𝜎2
𝑊

= ℎ𝑛

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

[
𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 + ( 𝑙̂𝑛,𝑖 + 𝑙̂𝑛, 𝑗)2 + 𝑢0

𝑛

2

− 2𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) ( 𝑙̂𝑛,𝑖 + 𝑙̂𝑛, 𝑗) + 2𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑢0
𝑛 − 2( 𝑙̂𝑛,𝑖 + 𝑙̂𝑛, 𝑗)𝑢0

𝑛

]
= ℎ𝑛

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

[
𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 + 𝑙̂𝑛,𝑖2 + 𝑙̂𝑛, 𝑗2 + 3𝑢0

𝑛

2

+ 2(𝑛 − 1)−2
𝑛∑︁

𝑘=1
𝑘≠𝑖

𝑛∑︁
𝑙=1
𝑙≠ 𝑗

𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)𝑘𝑛 (𝑋 𝑗 , 𝑋𝑙)

− 2(𝑛 − 1)−1𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
( 𝑛∑︁
𝑘=1
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋𝑘) +
𝑛∑︁
𝑙=1
𝑙≠ 𝑗

𝑘𝑛 (𝑋 𝑗 , 𝑋𝑙)
)

− 2𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)𝑢0
𝑛 − 4( 𝑙̂𝑛,𝑖 + 𝑙̂𝑛, 𝑗)𝑢0

𝑛

]
The only terms that are not directly covered by the previous results are the summands with cross-
terms, namely

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
( 𝑛∑︁
𝑘=1
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋𝑘) +
𝑛∑︁
𝑙=1
𝑙≠ 𝑗

𝑘𝑛 (𝑋 𝑗 , 𝑋𝑙)
)

and
𝑛∑︁

𝑘=1
𝑘≠𝑖

𝑛∑︁
𝑙=1
𝑙≠ 𝑗

𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)𝑘𝑛 (𝑋 𝑗 , 𝑋𝑙).

We show that all these terms are 𝑜𝑝 (1) by using previous results. We first have���� 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
𝑛∑︁

𝑘=1
𝑘≠𝑖

𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)
���� ≤ 𝑛∑︁

𝑖=1

( 𝑛∑︁
𝑗=1
𝑗≠𝑖

|𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) |
)2
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and ���� 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
𝑛∑︁
𝑙=1
𝑙≠ 𝑗

𝑘𝑛 (𝑋 𝑗 , 𝑋𝑙)
���� ≤ 𝑛∑︁

𝑖=1

( 𝑛∑︁
𝑗=1
𝑗≠𝑖

|𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) |
)2
.

Similarly, we have���� 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑛∑︁
𝑘=1
𝑘≠𝑖

𝑛∑︁
𝑙=1
𝑙≠ 𝑗

𝑘𝑛 (𝑋𝑖 , 𝑋𝑘)𝑘𝑛 (𝑋 𝑗 , 𝑋𝑙)
���� ≤ 3

𝑛∑︁
𝑖=1

( 𝑛∑︁
𝑗=1
𝑗≠𝑖

|𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) |
)2
.

From the proof of Lemma 3.2, we directly get that

(𝑛 − 1)−1ℎ𝑛

(
𝑛

2

)−1 𝑛∑︁
𝑖=1

( 𝑛∑︁
𝑗=1
𝑗≠𝑖

|𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗) |
)2

= 𝑜𝑃 (1).

Then by Lemma 3.1 and Lemma 3.2, we get that all terms in the expansion are 𝑜𝑃 (1), except

𝜎2
𝑊

= ℎ𝑛

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 = 𝜎2
𝑊 + 𝑜𝑃 (1).

This concludes the proof. □

A.5 Proof of the inconsistency of the non-parametric bootstrap

Proof of Proposition 3.4. From the multinomial representation, we have

Var∗(𝑢1∗
𝑛 (𝑋∗

𝑖 )) = E ∗ [(𝑢1∗
𝑛 (𝑋∗

𝑖 ))2] − (E ∗ [𝑢1∗
𝑛 (𝑋∗

𝑖 )])2

=
1
𝑛3

𝑛∑︁
𝑖=1

( 𝑛∑︁
𝑗=1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)
)2

−
(𝑛 − 1
𝑛

)2
𝑈2

𝑛

=

(𝑛 − 1
𝑛

)2
𝜎2
𝐿

and

Var∗(𝑢2∗
𝑛 (𝑋∗

𝑖 , 𝑋
∗
𝑗 )) = E ∗ [𝑘𝑛 (𝑋∗

𝑖 , 𝑋
∗
𝑗 )2] − (E ∗ [𝑘𝑛 (𝑋∗

𝑖 , 𝑋
∗
𝑗 )])2

=
1
𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2 −
(𝑛 − 1
𝑛

)2
𝑈2

𝑛

= ℎ−1
𝑛

𝑛 − 1
𝑛

𝜎2
𝑊

−
(𝑛 − 1
𝑛

)2
𝑈2

𝑛.

It follows that

Var∗𝑈∗
𝑛 =

4
𝑛

(𝑛 − 1
𝑛

)2
𝜎2
𝐿
+

(
𝑛

2

)−1 [
ℎ−1
𝑛

𝑛 − 1
𝑛

𝜎2
𝑊

−
(𝑛 − 1
𝑛

)2
𝑈2

𝑛 − 2
(𝑛 − 1
𝑛

)2
𝜎2
𝐿

]
.
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Then the result follows directly from Lemma 3.2 and Lemma 3.1. □

B A density argument

Lemma B.1. Let 𝑓 ∈ 𝐿1 ∩ 𝐿∞ and 𝑎, 𝑏 ∈ R. Then

lim
ℎ→0

∫
| 𝑓 (𝑥 + 𝑎ℎ) 𝑓 (𝑥 + 𝑏ℎ) − 𝑓 2(𝑥) | 𝑑𝑥 = 0.

Proof. We make use of a density argument. Suppose 𝑔 is continuous and compactly supported.
Then ∫

|𝑔(𝑥 + 𝑎ℎ)𝑔(𝑥 + 𝑏ℎ) − 𝑔2(𝑥) | 𝑑𝑥 ≤ 𝜆(𝐾) sup
𝑥

|𝑔(𝑥 + 𝑎ℎ)𝑔(𝑥 + 𝑏ℎ) − 𝑔2(𝑥) |

→ 0 as ℎ → 0,
(B.1)

since
|𝑎𝑏 − 𝑐𝑑 | ≤ |𝑏 | |𝑎 − 𝑐 | + |𝑐 | |𝑏 − 𝑑 |

which yields

sup
𝑥

|𝑔(𝑥 + 𝑎ℎ)𝑔(𝑥 + 𝑏ℎ) − 𝑔2(𝑥) |

≤ sup
𝑥

|𝑔(𝑥 + 𝑎ℎ) | |𝑔(𝑥 + 𝑏ℎ) − 𝑔(𝑥) | + sup
𝑥

|𝑔(𝑥) | |𝑔(𝑥 + 𝑎ℎ) − 𝑔(𝑥) |

≤ 𝑐1 sup
𝑥

|𝑔(𝑥 + 𝑏ℎ) − 𝑔(𝑥) | + 𝑐2 sup
𝑥

|𝑔(𝑥 + 𝑎ℎ) − 𝑔(𝑥) |

→ 0 as ℎ → 0, by uniform continuity of 𝑔.

Now, by density of 𝐶𝑐 in 𝐿1, for 𝜀 > 0, there is 𝑔 ∈ 𝐶𝑐 satisfying
∫
| 𝑓 (𝑥) − 𝑔(𝑥) | 𝑑𝑥 ≤ 𝜀. Then∫

| 𝑓 (𝑥 + 𝑎ℎ) 𝑓 (𝑥 + 𝑏ℎ) − 𝑔(𝑥 + 𝑎ℎ)𝑔(𝑥 + 𝑏ℎ) | 𝑑𝑥

≤ ∥ 𝑓 ∥∞
∫

| 𝑓 (𝑥 + 𝑎ℎ) − 𝑔(𝑥 + 𝑎ℎ) | 𝑑𝑥 + ∥𝑔∥∞
∫

𝑓 (𝑥 + 𝑏ℎ) − 𝑔(𝑥 + 𝑏ℎ) 𝑑𝑥

≤ 2(∥ 𝑓 ∥∞ + ∥𝑔∥∞)𝜀

by density and translation invariance. Moreover,∫
| 𝑓 2(𝑥) − 𝑔2(𝑥) | 𝑑𝑥 ≤ ∥ 𝑓 ∥∞

∫
| 𝑓 (𝑥) − 𝑔(𝑥) | 𝑑𝑥 + ∥𝑔∥∞

∫
| 𝑓 (𝑥) − 𝑔(𝑥) | 𝑑𝑥

≤ 2(∥ 𝑓 ∥∞ + ∥𝑔∥∞)𝜀

by density. Finally, by (B.1), ∫
|𝑔(𝑥 + 𝑎ℎ)𝑔(𝑥 + 𝑏ℎ) − 𝑔2(𝑥) | ≤ 𝜀
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for ℎ sufficiently close to 0. It follows by the triangular inequality and the previous inequalities that∫
| 𝑓 (𝑥 + 𝑎ℎ) 𝑓 (𝑥 + 𝑏ℎ) − 𝑓 2(𝑥) | 𝑑𝑥

≤
∫

| 𝑓 (𝑥 + 𝑎ℎ) 𝑓 (𝑥 + 𝑏ℎ) − 𝑔(𝑥 + 𝑎ℎ)𝑔(𝑥 + 𝑏ℎ) | 𝑑𝑥

+
∫

|𝑔(𝑥 + 𝑎ℎ)𝑔(𝑥 + 𝑏ℎ) − 𝑔2(𝑥) | +
∫

| 𝑓 2(𝑥) − 𝑔2(𝑥) |

≤ (1 + 4(∥ 𝑓 ∥∞ + ∥𝑔∥∞))𝜀.

□

The same argument can be extended by extending the absolute inequality for higher order
products, e.g., for 𝑘 = 3,

|𝑎𝑏𝑐 − 𝑑𝑒 𝑓 | ≤ |𝑏 | |𝑐 | |𝑎 − 𝑑 | + |𝑐 | |𝑑 | |𝑏 − 𝑒 | + |𝑑 | |𝑒 | |𝑐 − 𝑓 |.

By the exact same density argument, we obtain the following extension.

Corollary B.1. Let 𝑓 ∈ 𝐿1 ∩ 𝐿∞ and 𝐴 ⊂ R a finite subset. Then

lim
ℎ→0

∫
|Π𝑖∈𝐴 𝑓 (𝑥 + 𝑖ℎ) − 𝑓 #𝐴(𝑥) | 𝑑𝑥 = 0.

C Additional bounds on the variance of some U-statistics

When proving 𝐿2 convergence for estimators of the variance, a number of other second-order
U-statistics appear whose variance need to be bounded. In this section, we collect some of these
bounds. We also bound the covariance between two related U-statistics.

First, consider

𝐴1 =

(
𝑛 − 1

2

)−1 𝑛−1∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

𝑘𝑛 (𝑋1, 𝑋 𝑗)𝑘𝑛 (𝑋1, 𝑋𝑘).

Conditional on 𝑋1, this is a second-order U-statistics with kernel 𝑘𝑛 (𝑋1, 𝑋 𝑗)𝑘𝑛 (𝑋1, 𝑋𝑘). By the
Hoeffding decomposition and the general variance bounds for second-order U-statistics, we know
that, a.s.,

Var(𝐴1 |𝑋1) ≤ 𝜅1(𝑛−2E [𝑘𝑛 (𝑋1, 𝑋2)2𝑘𝑛 (𝑋1, 𝑋3)2 |𝑋1] + 𝑛−1E [E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3) |𝑋2]2 |𝑋1])

where 𝜅1 > 0, and so, by monotonicity and tower property of the expectation, we have

E [Var(𝐴1 |𝑋1)] ≤ 𝜅1(𝑛−2E [𝑘𝑛 (𝑋1, 𝑋2)2𝑘𝑛 (𝑋1, 𝑋3)2] + 𝑛−1E [E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3) |𝑋2]2]).

Lemma C.1. We have that

E [Var(𝐴1 |𝑋1)] = 𝑂 (𝑛−2ℎ−2
𝑛 + 𝑛−1)
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Proof. The bound for the quadratic term follows directly from Lemma 2.3, that is,

E [𝑘𝑛 (𝑋1, 𝑋2)2𝑘𝑛 (𝑋1, 𝑋3)2] = 𝑂 (ℎ−2
𝑛 ).

For the linear term, a subtle application of the mollification theorem in two dimensions can
deliver the result. However, a simpler argument using the properties of conditional expectations is
presented. Note that

E [E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3) |𝑋2]2]

= E [E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3) |𝑋2]E [𝑘𝑛 (𝑋4, 𝑋2)𝑘𝑛 (𝑋4, 𝑋5) |𝑋2]]

= E [E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3)𝑘𝑛 (𝑋4, 𝑋2)𝑘𝑛 (𝑋4, 𝑋5) |𝑋2]]

= E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3)𝑘𝑛 (𝑋4, 𝑋2)𝑘𝑛 (𝑋4, 𝑋5)] .

Then, by Lemma 2.4, it follows that

E [E [𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3) |𝑋2]2] = 𝑂 (1).

□

Consider now

𝐴2 =

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2.

This is a second-order U-statistics with kernel 𝑘𝑛 (𝑋𝑖 , 𝑋 𝑗)2. By the Hoeffding decomposition and
the general variance bounds for second-order U-statistics, we know that

Var 𝐴2 ≤ 𝜅2(𝑛−2E [𝑘𝑛 (𝑋1, 𝑋2)4] + 𝑛−1E [E [𝑘𝑛 (𝑋1, 𝑋2)2 |𝑋2]2])

for some 𝜅2 > 0.

Lemma C.2. We have that
Var 𝐴2 = 𝑂 (𝑛−2ℎ−3

𝑛 + 𝑛−1ℎ−2
𝑛 ).

Proof. The bound for the quadratic term follows directly from Lemma 2.3, that is,

E [𝑘𝑛 (𝑋1, 𝑋2)4] = 𝑂 (ℎ−3
𝑛 ).

For the linear term, we use the properties of the conditional expectation. We have

E [E [𝑘𝑛 (𝑋1, 𝑋2)2 |𝑋2]2] = E [𝑘𝑛 (𝑋1, 𝑋2)2𝑘𝑛 (𝑋3, 𝑋2)2]

and again by Lemma 2.3, we have

E [E [𝑘𝑛 (𝑋1, 𝑋2)2 |𝑋2]2] = 𝑂 (ℎ−2
𝑛 ).
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□

Now, consider the covariance

𝑅2 = cov
( 𝑛−1∑︁

𝑖=2

𝑛∑︁
𝑗=𝑖+1

𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗),
𝑛−1∑︁
𝑘=1
𝑘≠2

𝑛∑︁
𝑙=𝑘+1
𝑙≠2

𝑘𝑛 (𝑋2, 𝑋𝑘)𝑘𝑛 (𝑋2, 𝑋𝑙)
)
.

Modulo the scaling factors, this is the covariance between two U-statistics (with random kernels
anchored at 𝑋1 and 𝑋2, respectively). By finitude of all moments, a rough bound is directly given
by 𝑂 (𝑛4ℎ−2

𝑛 ). However, because of the i.i.d. assumption, many of summands are 0, namely all
those such that 1, 𝑖, 𝑗 are all different from 2, 𝑘, 𝑙. This allows us to drastically refine the bound.
We have that

Lemma C.3. We have that
𝑅2 = 𝑂 (𝑛3 + 𝑛2ℎ−1

𝑛 + 𝑛ℎ−2
𝑛 ).

Proof. Note first that the following expansion holds

𝑅2 =

𝑛−1∑︁
𝑖=2

𝑛∑︁
𝑗=𝑖+1

𝑛∑︁
𝑙=3

cov(𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋𝑙))

+
𝑛∑︁
𝑗=3

𝑛−1∑︁
𝑘=1
𝑘≠2

𝑛∑︁
𝑙=𝑘+1
𝑙≠2

cov(𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋𝑘)𝑘𝑛 (𝑋2, 𝑋𝑙))

+
𝑛−2∑︁
𝑖=3

𝑛−1∑︁
𝑗=𝑖+1

𝑛∑︁
𝑙= 𝑗+1

cov(𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋 𝑗)𝑘𝑛 (𝑋2, 𝑋𝑙))

+
𝑛−1∑︁
𝑖=3

𝑛∑︁
𝑗=𝑖+1

𝑛∑︁
𝑙=𝑖+1

cov(𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋𝑖)𝑘𝑛 (𝑋2, 𝑋𝑙))

+
𝑛−1∑︁
𝑖=4

𝑛∑︁
𝑗=𝑖+1

𝑖−1∑︁
𝑘=3

cov(𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋𝑘)𝑘𝑛 (𝑋2, 𝑋𝑖)),

which we rewrite as
𝑅2 = 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 + 𝑆5.

Note now that, for all 𝑚 ∈ {1, 2, 3, 4, 5},

𝑆𝑚 = 𝑂 (𝑛3 + 𝑛2ℎ−1
𝑛 + 𝑛ℎ−2

𝑛 ).

This follows from Lemma 2.4 and the fact that there are 4 different indexes in each summand,
except when one of the free indexes is exactly equal to one of the other indexes. This is shown for
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𝑆1 for illustration, but the same argument applies to the other terms. We have

𝑆1 =

𝑛−1∑︁
𝑖=3

𝑛∑︁
𝑗=𝑖+1

𝑛∑︁
𝑙=3

𝑙≠𝑖,𝑙≠ 𝑗

cov(𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋𝑙))

+
𝑛−1∑︁
𝑖=3

𝑛∑︁
𝑗=𝑖+1

cov(𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋𝑖))

+
𝑛−1∑︁
𝑖=3

𝑛∑︁
𝑗=𝑖+1

cov(𝑘𝑛 (𝑋1, 𝑋𝑖)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋 𝑗))

+
𝑛∑︁
𝑗=3

cov(𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋 𝑗))

+
𝑛∑︁
𝑗=3

𝑛∑︁
𝑙=3
𝑙≠ 𝑗

cov(𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋 𝑗), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋𝑙))

By the i.i.d. assumption, each summand in the five terms of the expansion is equal, respectively, to

cov(𝑘𝑛 (𝑋1, 𝑋3)𝑘𝑛 (𝑋1, 𝑋4), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋5))

cov(𝑘𝑛 (𝑋1, 𝑋3)𝑘𝑛 (𝑋1, 𝑋4), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋3))

cov(𝑘𝑛 (𝑋1, 𝑋3)𝑘𝑛 (𝑋1, 𝑋4), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋4))

cov(𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋3))

cov(𝑘𝑛 (𝑋1, 𝑋2)𝑘𝑛 (𝑋1, 𝑋3), 𝑘𝑛 (𝑋2, 𝑋1)𝑘𝑛 (𝑋2, 𝑋4))

From Lemma 2.4, it follows that the first term in the expansion is 𝑂 (𝑛3), the second, third, and
fifth terms are 𝑂 (𝑛2ℎ−1

𝑛 ), while the fourth one is 𝑂 (𝑛ℎ−2
𝑛 ). □

D Bias results in Giné and Nickl (2008)

Lemma D.1 (Part 1 of Theorem 1 in Giné and Nickl (2008)). If 𝐾 satisfies Assumption K and 𝑓0

satisfies Assumption D(𝑠) with 𝑠 ∈ (0, 1/2]. Then the bias of𝑈𝑛 satisfies

E [𝑈𝑛] − 𝜃0 = 𝑂 (ℎ2𝑠
𝑛 ).
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Proof. Write 𝐾ℎ𝑛 (𝑥) = ℎ−1
𝑛 𝐾𝑛 (ℎ−1

𝑛 𝑥). We have

E [𝑈𝑛] − 𝜃0 =

∫
R

∫
R
𝐾ℎ𝑛 (𝑥 − 𝑦) 𝑓0(𝑦) 𝑑𝑦 𝑓0(𝑥) 𝑑𝑥 −

∫
R
𝑓0(𝑥) 𝑓0(𝑥) 𝑑𝑥

=

∫
R

∫
R
𝐾ℎ𝑛 (𝑥 − 𝑦) ( 𝑓0(𝑦) − 𝑓0(𝑥)) 𝑓0(𝑥) 𝑑𝑦 𝑑𝑥

=

∫
R

∫
R
𝐾 (𝑢) ( 𝑓0(𝑥 − 𝑢ℎ𝑛) − 𝑓0(𝑥)) 𝑓0(𝑥) 𝑑𝑢 𝑑𝑥

=

∫
R
𝐾 (𝑢)

( ∫
R
𝑓0(𝑢ℎ𝑛 − 𝑥) 𝑓0(𝑥) 𝑑𝑥 −

∫
R
𝑓0(0 − 𝑥) 𝑓0(𝑥) 𝑑𝑥

)
𝑑𝑢

=

∫
R
𝐾 (𝑢) (( 𝑓0 ∗ 𝑓0) (𝑢ℎ𝑛)) − ( 𝑓0 ∗ 𝑓0) (0)) 𝑑𝑢,

where ∗ denotes convolution and 𝑓0(𝑥) = 𝑓0(−𝑥). The second equality follows from the fact that
the kernel integrates to one, the third from the change of variable 𝑦 = 𝑥 − 𝑢ℎ𝑛, and the fourth from
Fubini’s theorem. Then by applying Lemma D.2 since 𝑓0 ∈ 𝐿1 as a probability density function,
we get

|E [𝑈𝑛] − 𝜃0 | ≤
∫
R
𝐶∥ 𝑓0∥2

2,𝑠 |𝐾 (𝑢) | |𝑢ℎ𝑛 |2𝑠 𝑑𝑢

= 𝑐1ℎ
2𝑠
𝑛

where 𝑐1 = 𝐶∥ 𝑓0∥2
2,𝑠

∫
R
|𝐾 (𝑢) | |𝑢 |2𝑠 𝑑𝑢 and 0 < 𝐶 < ∞ is a constant independent of 𝑓0 and ℎ𝑛. □

Lemma D.2 (Lemma 1 in Giné and Nickl (2008)). If 𝑓 , 𝑔 ∈ 𝐿1 satisfy Assumption D(𝑠) with
0 < 𝑠 ≤ 1/2, then for any 𝑥 ∈ R and 𝑡 ≠ 0,

| ( 𝑓 ∗ 𝑔) (𝑥 + 𝑡) − ( 𝑓 ∗ 𝑔) (𝑥) |
|𝑡 |2𝑠

≤ 𝐶∥ 𝑓 ∥2,𝑠 ∥𝑔∥2,𝑠

where 0 < 𝐶 < ∞ is a fixed constant independent of 𝑓 , 𝑔, 𝑥 and 𝑡.

Proof. Denote 𝐹 the Fourier transform. Since 𝑓 , 𝑔 ∈ 𝐿1 and 𝑔 bounded, 𝑓 ∗𝑔 ∈ 𝐿1 and continuous,
and since 𝑓 , 𝑔 ∈ 𝐿2, we have 𝐹 ( 𝑓 ∗ 𝑔) ∈ 𝐿1. We then have

| ( 𝑓 ∗ 𝑔) (𝑥 + 𝑡) − ( 𝑓 ∗ 𝑔) (𝑥) |
|𝑡 |2𝑠

≤ |𝑡 |−2𝑠 ∥𝐹−1𝐹 [( 𝑓 ∗ 𝑔) (· + 𝑡) − ( 𝑓 ∗ 𝑔) (·)] ∥∞

≤ (2𝜋)−1 |𝑡 |−2𝑠 ∥𝐹 [( 𝑓 ∗ 𝑔) (· + 𝑡) − ( 𝑓 ∗ 𝑔) (·)] ∥1

= (2𝜋)−1 |𝑡 |−2𝑠
∫
R
|𝐹 ( 𝑓 ∗ 𝑔) (𝑢) (𝑒−𝑖𝑢𝑡 − 1) | 𝑑𝑢

= (2𝜋)−1
∫
R
|𝐹 𝑓 (𝑢) | |𝑢 |𝑠 |𝐹𝑔(𝑢) | |𝑢 |𝑠 | (𝑒

−𝑖𝑢𝑡 − 𝑒−𝑖0) |
|𝑢 |2𝑠 |𝑡 |2𝑠

𝑑𝑢

≤ 𝐶∥ 𝑓 ∥2,𝑠 ∥𝑔∥2,𝑠 .

The first inequality follows from the definition of the 𝐿∞ norm and the Fourier inversion theorem,
the second from the inequality ∥ 𝑓 ∥∞ ≤ ∥𝐹 𝑓 ∥1 (which also follows from the Fourier inversion
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theorem). The first equality follows from the definition of the 𝐿1 norm and the second from the
convolution theorem. The last inequality follows from Hölder’s inequality and the fact that 𝑒−𝑖 ( ·)

is bounded Lipschitz. □

Remark D.1. The assumption 𝑠 ≤ 1/2 is needed for 𝑐1 to be finite under assumption K. This can
be relaxed if

∫
|𝐾 (𝑢) | |𝑢 |2𝑠 𝑑𝑢 < ∞. If the kernel 𝐾 is non-negative (and so is a density function),

then this condition is equivalent to the random variable with density 𝐾 has finite 2𝑠 order moments.
This is often the case for kernel of order 1, and so the result can be naturally generalized to 𝑠 ≥ 1/2.
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