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Theorem 1 (Kakutani–Glicksberg–Ky Fan Fixed Point Theorem). Let 𝐾 be a
nonempty compact convex subset of a locally convex Hausdorff topological vector space
𝑋 . Let Γ : 𝐾 ⇒ 𝐾 be a correspondence with closed graph and nonempty convex values.
Then there exists a point 𝑥 in 𝐾 such that 𝑥 ∈ Γ(𝑥).
Proof. Let 𝑁 be a closed symmetric neighborhood and define 𝐹𝑁 = {𝑥 ∈ 𝑋 : 𝑥 ∈
(Γ(𝑥) + 𝑁) ∩ 𝐾}. We first prove that 𝐹𝑁 is closed. The correspondence defined by
𝑁 (𝑥) = 𝑁 +𝑥 has closed graph, and so the correspondence defined by 𝑀 (𝑥) = 𝑁 (𝑥)∩𝐾 is
upper hemicontinuous, and so is the correspondence defined by𝑀◦Γ(𝑥) = (Γ(𝑥)+𝑁)∩𝐾 .
Hence, the correspondence defined by (id ∩ (𝑀 ◦ Γ)) (𝑥) = {𝑥} ∩ (Γ(𝑥) + 𝑁) ∩ 𝐾 is
also upper hemicontinuous. The set (id ∩ (𝑀 ◦ Γ))𝑢 (∅) is thus open. Since 𝐹𝑁 =

𝑋 \ (id ∩ (𝑀 ◦ Γ))𝑢 (∅), we have that 𝐹𝑁 is closed. We now prove that 𝐹𝑁 is nonempty.
By compactness of 𝐾 , there exist 𝑎0, 𝑎1, . . . , 𝑎𝑑 ∈ 𝐾 such that 𝐾 ⊆ ⋃𝑑

𝑖=0(𝑎𝑖 +𝑁). Define
the convex hull 𝑆𝑑 = conv({𝑎0, 𝑎1, . . . , 𝑎𝑛}), which is compact with dimension at most 𝑑,
and so can be identified with a subset of R𝑑 . Consider the correspondence 𝐵 : 𝑆𝑑 ⇒ 𝑆𝑑−1

defined by 𝐵(𝑥) = (Γ(𝑥) + 𝑁) ∩ 𝑆𝑑 . For each 𝑥 ∈ 𝑆𝑑 , the set 𝐵(𝑥) is convex since
Γ(𝑥) and 𝑁 are convex. For each 𝑥 ∈ 𝑆𝑑 , we have Γ(𝑥) ⊆ 𝐾 ⊆ (𝑆𝑑 + 𝑁), hence
Γ(𝑥) ∩ (𝑆𝑑 +𝑁) ≠ ∅. Fix 𝑥 ∈ R𝑑 and consider 𝑢 ∈ Γ(𝑥) ∩ (𝑆𝑑 +𝑁) with 𝑢 = 𝑣 +𝑤 where
𝑣 ∈ 𝑆𝑑 and 𝑤 ∈ 𝑁 . Since 𝑁 is symmetric, −𝑤 ∈ 𝑁 , and so 𝑣 = 𝑢 −𝑤 ∈ 𝑆𝑑 ∩ (Γ(𝑥) + 𝑁),
hence 𝑆𝑑∩ (Γ(𝑥) +𝑁) ≠ ∅. The conditions of Kakutani’s theorem are satisfied by 𝐵 (with
the identification of 𝑆𝑑 with some subset of R𝑑), and so there exists a point 𝑥0 ∈ 𝑆𝑑 such
that 𝑥0 ∈ 𝑆𝑑 ∩ (Γ(𝑥0) + 𝑁). Hence, 𝑥0 ∈ 𝐾 ∩ (Γ(𝑥0) + 𝑁), and so 𝐹𝑁 ≠ ∅. We conclude
the proof by compactness. If 𝑁 and 𝑀 are closed symmetric neighborhoods, then 𝑁 ∩𝑀
is symmetric and 𝐹𝑁∩𝑀 ⊆ 𝐹𝑁 ∩ 𝐹𝑀 . Therefore any finite subcollections of sets 𝐹𝑁
has nonempty intersection, which implies by compactness of 𝐾 that

⋂
𝑁 𝐹𝑁 ≠ ∅. Let

𝑥0 ∈ ⋂
𝑁 𝐹𝑁 . If 𝑥0 ∉ Γ(𝑥0), then there is a symmetric neighborhood 𝑀 (e.g., 𝑀 = {0})

such that 𝑥0 ∉ 𝐹𝑀 : a contradiction. Therefore, 𝑥0 ∈ Γ(𝑥0). □

Reference. We follow Berge (1963) which is a standard. The proof extends Kakutani’s
fixed point theorem in R𝑑 to locally convex space by using the fact that compact sets in
infinite-dimensional spaces do not behave so differently than finite-dimensional subsets.
Another method of proof relies on some fixed-point theorem of Halpern and Bergman
and can be found in Aliprantis&Border (2006).
Remark. At the basis of many fixed point theorems lies a number of equivalent re-
sults: Sperner’s lemma, the Knaster–Kuratowski–Mazurkiewicz (KKM) lemma, and the
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Brouwer’s fixed point theorem (a combinatorial result, a set-covering result, and an alge-
braic topology result; each result can be proved separately using different arguments, but
each implies the other). From our purpose, we start with Sperner’s lemma and use it to
prove the KKM lemma. We then use the KKM lemma to prove Kakutani’s theorem in
R𝑑 and use an approximation argument for compact sets in infinite dimensional spaces
to prove the result in this setting. This is exactly the route followed by Berge (1963)
p.171-174&251. Other standard routes exist (in a more or less combinatorial fashion),
but they all build on the same first step which is to use any of the three equivalent results:
Sperner’s lemma, the KKM lemma, or the Brouwer’s fixed point theorem. See also
Appendix B in Aubin (1979), S.4-6. in Border (1985), S.17.8-9. in Aliprantis&Border
(2006), or S.2.5.9.D. in Granas&Dugundji (2003).

Remark. By the closed graph theorem and the fact that closed sets in compact space are
compact, the theorem is equivalently valid for upper hemicontinuous correspondences
with nonempty convex closed values or upper hemicontinuous correspondences with
nonempty convex compacts values. Note that Berge (1963) requires compact values in
the definition of upper hemicontinuity.

Lemma 2 (Sperner’s Lemma). Let 𝑇 be a triangulisation of a 𝑑-simplex Δ𝑑 . Suppose
the vertexes in 𝑇 are labeled by elements of {0, 1, . . . , 𝑑} such that1:

1. each vertex of Δ𝑑 has a distinct label;
2. the label of any vertex in 𝑇 that lies on a facet of Δ𝑑 matches one of the labels of

the facet of that same facet.
Then there exists an odd number of 𝑑-simplices 𝜎 ∈ 𝑇 such that each of the vertices of 𝜎
take a distinct label. In particular, there exists one such simplex in the triangulation.

Proof. The proof works by induction on 𝑑. If 𝑑 = 0, the result is trivially true. Let 𝑑 > 0
and suppose the result is true for 𝑑 − 1. Let 𝑇 be a triangulation of Δ𝑑 with Sperner
labeling. For each 𝜎 ∈ 𝑇 , define 𝐹 (𝜎) as the number of (𝑑 − 1)-simplices labeled
(0, 1, . . . , 𝑑 − 1) among the 𝑑 + 1 facets of 𝜎. We now compute 𝑆 =

∑
𝜎∈𝑇 𝐹 (𝜎) in two

ways. For the first count, note that the (𝑑 + 1)-simplices appearing in 𝑆 exclusively come
from the 𝐴 𝑑-simplices of 𝑇 labeled (0, 1, . . . , 𝑑 − 1, ℎ) with ℎ ∈ {0, 1, . . . , 𝑑 − 1} and
from the 𝐵 complete 𝑑-simplices of 𝑇 . Each of the 𝐴 𝑑-simplices have 2 faces labeled
(0, 1, . . . , 𝑑 − 1) whereas each of the 𝐵 complete 𝑑-simplices have only 1 face labeled
(0, 1, . . . , 𝑑−1). Thus, 𝑆 = 2𝐴+𝐵. For the second count, note that the𝐶 (𝑑−1)-simplices
labeled (0, 1, . . . , 𝑑 − 1) on the boundary of Δ𝑑 only contributes 1 each to 𝑆 whereas the
𝐷 (𝑑 − 1)-simplices labeled (0, 1, . . . , 𝑑 − 1) in the interior of Δ𝑑 contributes 2 each to
𝑆 since each such (𝑑 − 1)-simplex in the interior is the face of 2 𝑑-simplices in 𝑇 . Thus,
𝑆 = 2𝐴 + 𝐵 = 𝐶 + 2𝐷. Now, the 𝐶 (𝑑 − 1)-simplices labeled (0, 1, . . . , 𝑑 − 1) on the
boundary of Δ𝑑 necessarily come from the facet of Δ𝑑 labeled (0, 1, . . . , 𝑑 − 1) and so
are the complete simplices in a Sperner labeling of a triangulation of that facet. By the
induction hypothesis, 𝐶 is odd, so 𝐵 is odd. □

Reference. This combinatorial proof by induction is very standard. Another proof by
induction in the language of graph theory exists (see Meunier). Proofs from the algebraic
topology side, inspired by the proof of Brouwer’s fixed point, also exist (see discussion
in McLennan&Tourky (2008)); but they can actually be interpreted as proving Brouwer’s

1A label of this form is called a Sperner labeling. Note that this is a boundary condition: the conditions
only apply to the vertex lying in the facets of Δ𝑑 ; the inside vertexes in 𝑇 can be labeled arbitrarily.
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theorem using tools from algebraic topology and using it to derive Sperner’s lemma. The
essence of Sperner’s lemma is combinatorial and so we use combinatorial arguments to
prove it. Even if this proof is not constructive, there exist some which give an explicit
algorithm for locating the completely labeled cells in a triangulated simplex.

Lemma 3 (Lebesgue’s Covering Theorem). Let 𝐹1, . . . , 𝐹𝑑 be a closed finite covering of
a compact metric space 𝑋 . Then there exists a number Y > 0 such that for each set 𝐴
with diam(𝐴) < Y, we have

⋂{𝐹𝑖 : 𝐹𝑖 ∩ 𝐴 ≠ ∅} ≠ ∅.

Proof. We first prove that: if 𝐹1, . . . , 𝐹𝑑 are closed nonempty sets in a compact metric
space 𝑋 with 𝐹1 ∩ · · · ∩ 𝐹𝑑 = ∅, then there exists Y > 0 such that (⋂𝑑

𝑖=1 𝐹𝑖) ∩ 𝐴 ≠ ∅
implies diam(𝐴) ≥ Y. Let 𝑍 be the compact metric space 𝐹1 × · · · × 𝐹𝑛 and consider the
continuous map 𝑓 : 𝑍 → R defined by (𝑥1, . . . , 𝑥𝑑) ↦→ max{𝑑 (𝑥𝑖 , 𝑥 𝑗) : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑑}.
Because 𝐹1 ∩ · · · ∩ 𝐹𝑑 = ∅, the function 𝑓 never reaches 0 and it thus admits a minimum
Y > 0. If 𝐴 ⊆ 𝑋 is such that (⋂𝑑

𝑖=1 𝐹𝑖) ∩ 𝐴 ≠ ∅, there is 𝑥′
𝑖
∈ 𝐴 ∩ 𝐹𝑖 for each 𝑖. Since

𝑓 (𝑥′1, . . . , 𝑥
′
𝑑
) ≥ Y, then 𝑑 (𝑥′

𝑖
, 𝑥′

𝑗
) ≥ Y for at least some 𝑖 and 𝑗 , and so diam(𝐴) ≥ Y by

definition. The result then follows directly by contradiction. □

Reference. We follow Granas&Dujungdi (2003) p.90. Another proof is in Berge (1963)
p.95. The preliminary result in the proof is often known as Lebesgue’s number lemma
and often occurs is its dual form: if {𝑈𝑖 : 𝑖 ∈ 𝐼} is an open cover of a compact metric
space 𝑋 , then there exists Y > 0 such that every set 𝐴 ⊆ 𝑋 with diam(𝐴) < Y is contained
in some𝑈𝑖 .

Lemma 4 (Knaster–Kuratowski–Mazurkiewicz Lemma). Let {𝑥0, 𝑥1, . . . , 𝑥𝑑} ⊆ R𝑑+1

and Δ𝑑 = conv{𝑥𝑖 : 𝑖 ∈ {0, 1, . . . , 𝑑}} the 𝑑-simplex with vertices {𝑥0, 𝑥1, . . . , 𝑥𝑛}. Let
𝐹0, 𝐹1, . . . , 𝐹𝑑 be closed subsets of Δ𝑑 such that for every 𝐼 ⊆ {0, 1, . . . , 𝑑}, we have
conv{𝑥𝑖 : 𝑖 ∈ 𝐼} ⊆ ⋃

𝑖∈𝐼 𝐹𝑖 . Then the intersection
⋂𝑑

𝑖=0 𝐹𝑖 is nonempty and compact.

Proof. The collection of sets {𝐹0, 𝐹1, . . . , 𝐹𝑑} forms a closed covering of the setΔ𝑑 which
is compact by the Heine–Borel theorem. By Lebesgue’s covering theorem, there exists
Y > 0 such that for each set 𝐴 in Δ𝑑 with diam(𝐴) < Y, we have

⋂{𝐹𝑖 : 𝐹𝑖 ∩ 𝐴 ≠ ∅} ≠ ∅.
Let𝑇 be a triangulation ofΔ𝑑 such that diam(𝜎) < Y for each𝜎 ∈ 𝑇 . (It is always possible
to find such a triangulation). For any vertex 𝑣 of 𝑇 , consider the lowest dimensional face
conv({𝑥𝑖0 , . . . , 𝑥𝑖𝑠 }) of Δ𝑑 containing 𝑣. By assumption, there is 𝑖 ∈ {𝑖0, . . . , 𝑖𝑠} such
that 𝑣 ∈ 𝐹𝑖 . If we label 𝑣 by 𝑖 and repeat the process for each 𝑣 ∈ 𝑉 , we obtain a Sperner
labeling for 𝑇 . Then, by Sperner’s lemma, there is a 𝑑-simplex 𝜎′ ∈ 𝑇 with vertices
{𝑣0, 𝑣1, . . . , 𝑣𝑑} such that 𝑣𝑖 ∈ 𝐹𝑖 for all 𝑖 ∈ {0, 1, . . . , 𝑑}. Hence, 𝜎′ ∩ 𝐹𝑖 ≠ 0 for all
𝑖 ∈ {0, 1, . . . , 𝑑}. Since diam(𝜎′) < Y, we have

⋂𝑑
𝑖=0 𝐹𝑖 ≠ ∅. □

Reference. The proof is standard and follows Berge (1963). Another proof using the
sequential characterization of compactness (which is generally proved using Lebesgue’s
covering theorem) is in Aubin (1979). (A similar proof as in Aubin (1979) is in Border
(1985) but is incomplete as such, for the convergence to a same element is not explicitly
guaranteed.)

Lemma 5 (Kakutani’s Fixed Point Theorem). Let 𝐾 be a nonempty compact convex
subset of R𝑑 . Let Γ : 𝐾 ⇒ 𝐾 be a correspondence with closed graph and nonempty
convex values. Then there exists a point 𝑥 in 𝐾 such that 𝑥 ∈ Γ(𝑥).
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Proof. The result is proved in three steps: (1) for 𝐾 = conv({𝑎0, 𝑎1, . . . , 𝑎𝑑}) a 𝑑-simplex
and Γ a single-valued mapping; (2) for 𝐾 = conv({𝑎0, 𝑎1, . . . , 𝑎𝑑}) a 𝑑-simplex and Γ a
correspondence; (3) for 𝐾 a nonempty compact convex set.

(1) Every 𝑑-simplex has an internal point which can be taken to be the origin 0
without loss of generality. Consider the convex cone 𝐶𝑖 = {_0𝑎0 +_1𝑎1 + · · · +_𝑖−1𝑎𝑖−1 +
_𝑖+1𝑎𝑖+1 + · · · + _𝑑𝑎𝑑 : _0, . . . , _𝑑 ≥ 0}. Let 𝐵_(0) the closed ball of center 0 and
radius _ chosen sufficiently large so that 𝐾 ⊆ 𝐵_(𝑥) for all 𝑥 ∈ 𝐾 . The set 𝐶′

𝑖
=

𝐶𝑖 ∩ 𝐵_(0) is compact, hence the correspondence Γ𝑖 defined by Γ𝑖 (𝑥) = 𝑥 + 𝐶′
𝑖

is
upper hemi-continuous. By the closed graph theorem, Γ is upper hemicontinuous, and
so is Γ ∩ Γ𝑖 . Hence, (Γ ∩ Γ𝑖)𝑢 (∅) = {𝑥 ∈ 𝐾 : Γ(𝑥) ∩ Γ𝑖 (𝑥) = ∅} is open. Define
𝐹𝑖 := R𝑑 \ (Γ ∩ Γ𝑖)𝑢 (∅) = R𝑑 \ 𝐾 ∪ {𝑥 ∈ 𝐾 : Γ(𝑥) ∩ Γ𝑖 (𝑥) ≠ ∅}, which is closed
by complementation. Since 𝐾 ⊆ Γ0(𝑥) ∪ · · · ∪ Γ𝑑 (𝑥) for each 𝑥 ∈ 𝐾 , we always have
Γ(𝑥)∩Γ𝑖 (𝑥) ≠ ∅ for some 𝑖, hence the 𝐹𝑖’s form a closed covering of 𝐾 . Moreover 𝑎𝑖 ∈ 𝐹𝑖
for each 𝑖 since Γ(𝑎𝑖) ⊆ 𝐾 ⊆ Γ𝑖 (𝑎𝑖). If 𝐹𝑖 meets the facet 𝑆𝑖

𝑑−1 of 𝐾 opposite to 𝑎𝑖 , there
exists 𝑦 ∈ 𝑆𝑖

𝑑−1 such that Γ(𝑦) ∩ Γ𝑖 (𝑦) ≠ ∅. This means that 𝑦 = Γ(𝑦). Suppose now that
𝐹𝑖 does not meet 𝑆𝑖

𝑑−1. Then 𝐹𝑖 does not meet any faces of 𝐾 contained in 𝑆𝑖
𝑑−1. That

is, conv{𝑎 𝑗 : 𝑗 ∈ 𝐼} ∩ 𝐹𝑖 = ∅ for every 𝐼 ⊆ {0, 1, . . . , 𝑑} \ {𝑖}. But since the 𝐹𝑖’s cover
𝐾 , we necessarily have conv{𝑎 𝑗 : 𝑗 ∈ 𝐼} ⊆ ⋃

𝑗∈𝐼 𝐹𝑗 for every 𝐼 ⊆ {0, 1, . . . , 𝑑} \ {𝑖}.
Therefore, the assumptions of the KKM lemma are satisfied, and so

⋂𝑑
𝑖=0 𝐹𝑖 ≠ ∅. Let

𝑦 ∈ ⋂𝑑
𝑖=0 𝐹𝑖 ≠ ∅. Then Γ(𝑦) meets all the Γ𝑖 (𝑦), and so 𝑦 = Γ(𝑦).

(2) Let 𝑆 (𝑘 ) be the barycentric division of order 𝑘 of 𝐾 . For each vertex 𝑎𝑘 of
𝑆 (𝑘 ) , let 𝑏𝑘 ∈ Γ(𝑎𝑘) and write 𝑏𝑘 = 𝜙𝑘 (𝑎𝑘). For each 𝑥 ∈ 𝐾 , we consider a 𝑑-
simplex conv({𝑎𝑘

𝑖0
, 𝑎𝑘

𝑖1
, . . . , 𝑎𝑘

𝑖𝑑
}) ∈ 𝑆 (𝑘 ) that contains 𝑥 and define the function 𝜙𝑘 by

𝜙𝑘 (𝑥) = 𝑝0𝜙𝑘 (𝑎𝑖0) + · · · + 𝑝𝑑𝜙𝑘 (𝑎𝑖𝑑 ) where 𝑥 = 𝑝0𝑎𝑖0 + · · · + 𝑝𝑑𝑎𝑖𝑑 . The function so
defined is linear in the interior of a simplex of 𝑆 (𝑘 ) and so is continuous. Moreover, it
is uniquely defined (even at points which belong to several 𝑑-simplices of 𝑆 (𝑘 ) ), hence
𝜙𝑘 is continuous on 𝐾 . Therefore, by part (1) of the proof, there exists 𝑥𝑘 ∈ 𝐾 such
that 𝑥𝑘 = 𝜙𝑘 (𝑥𝑘). Since 𝐾 is compact, the sequence (𝑥𝑘)𝑘∈N has a limit point 𝑥0.
We now prove that 𝑥0 ∈ Γ(𝑥0). If conv({𝑎𝑘0 , 𝑎

𝑘
1 , . . . , 𝑎

𝑘
𝑑
}) ∈ 𝑆 (𝑘 ) contains 𝑥𝑘 , then

𝑥𝑘 = 𝜙𝑘 (𝑥𝑘) =
∑𝑑

𝑖=0 𝑝
𝑘
𝑖
𝑏𝑘
𝑖

where 𝑥 =
∑𝑑

𝑖=0 𝑝
𝑘
𝑖
𝑎𝑘
𝑖
. Let (𝑥𝑘𝑚) be a subsequence of (𝑥𝑘)

that converges to 𝑥0 and (𝑙𝑚) a subsequence of (𝑘𝑚) such that 𝑏𝑙𝑚
𝑖

→ 𝑏0
𝑖

and 𝑝𝑙𝑚
𝑖

→ 𝑝0
𝑖

for
𝑖 = 0, 1, . . . , 𝑑. We have 𝑝0

𝑖
≥ 0,

∑𝑑
𝑖=0 𝑝

0
𝑖
= 1, and

∑𝑑
𝑖=0 𝑝

0
𝑖
𝑏0
𝑖
= 𝑥0. Since 𝑏𝑙𝑚

𝑖
∈ Γ(𝑎𝑙𝑚

𝑖
)

and Γ is upper hemicontinuous, we have 𝑏0
𝑖
∈ Γ(𝑥0). Since Γ(𝑥0) is convex, we have

𝑥0 ∈ Γ(𝑥0).
(3) Choose an interior point of 𝐾 for origin 0 and consider an 𝑛-simplex 𝑆 which

contains 𝐾 in its interior. Define the function 𝜙 by 𝜙(𝑥) = 𝑥 if 𝑥 ∈ 𝐾 and 𝜙(𝑥) equal to
the extremity of [0, 𝑥] ∩ 𝐾 if 𝑥 ∈ 𝑆 \ 𝐾 . Then 𝜙 is continuous, and so Γ ◦ 𝜙 is upper
hemicontinuous. The conditions of part (2) of the proof apply, so there exists 𝑥0 ∈ 𝑆

such that 𝑥0 ∈ Γ(𝜙(𝑥0)). Since Γ(𝜙(𝑥0)) ⊆ 𝐾 by definition, we have 𝑥0 ∈ 𝐾 , and so
𝑥0 = 𝜙(𝑥0). Therefore, 𝑥0 ∈ Γ(𝜙(𝑥0)) = Γ(𝑥0). □

Reference. This is exactly the proof of Berge (1963), which is not very different from
the initial proof of Kakutani (1941). Another proof due to Cellina (1969) is based on
selection theorems which allow to find a continuous function whose graph is within the
graph of some correspondence.
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