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Theorem 1 (Berge’s Maximum Theorem). Let 𝑋 and Θ be topological spaces, 𝑓 : Θ×
𝑋 → R a continuous function, and 𝐶 : Θ⇒ 𝑋 a correspondence with nonempty compact
values. Define the value function1 𝑣 : Θ → R by

𝑣(\) = max{ 𝑓 (\, 𝑥) : 𝑥 ∈ 𝐶 (\)},

and the solution correspondence 𝑆 : Θ⇒ 𝑋 by

𝑆(\) = arg max{ 𝑓 (\, 𝑥) : 𝑥 ∈ 𝐶 (\)}.

If the correspondence 𝐶 is also continuous, then the value function 𝑣 is continuous and
the solution correspondence 𝑆 is upper hemicontinuous with nonempty compact values.

Proof. By Lemma 2, since 𝑓 and 𝐶 are continuous, the value function 𝑣 is continuous.
Let \ ∈ Θ. Since 𝑓 is continuous, the projection 𝑓\ : 𝑥 ↦→ 𝑓 (\, 𝑥) is continuous, and

since 𝐶 (\) is a nonempty compact set, the extreme value theorem guarantees that the set
𝑆(\) is nonempty and compact.

Define 𝐷 : Θ ⇒ 𝑋 by 𝐷 (\) = {𝑥 ∈ 𝑋 : 𝑓 (\, 𝑥) = 𝑣(\)}. Then Gr𝐷 = {(\, 𝑥) ∈
Θ× 𝑋 : 𝑓 (\, 𝑥) = 𝑣(\)} is closed since 𝑓 and 𝑣 are continuous and R is Hausdorff. Since
𝑆 = 𝐶 ∩ 𝐷, the solution correspondence 𝑆 is upper hemicontinuous by Lemma 3. □

Reference. Bouligand and Kuratowksi independently introduced upper and lower hemi-
continuous correspondences (see p.109 in Berge (1963)). The definitions for hemicon-
tinuity do not always match; we adopt the definitions as in Aliprantis&Border (2006)
that leave out properties not conceptually related to continuity. The maximum theorem
first (?) appeared in Berge (1959) for Hausdorff topological spaces. Our statement and
proof of the theorem follow T.17.31. in Aliprantis&Border (2006) p.570 which adapts
"Maximum theorem" in Berge (1963) p.116 to arbitrary topological spaces. Our proof
of Lemma 2 mostly follows Aliprantis&Border L.17.29-30 and our proof of Lemma 3
adapts to arbitrary topological spaces the proof in Berge (1963) of T.6.7. p.112.

Lemma 2. Let 𝑋 and Θ be topological spaces, 𝑓 : Θ×𝑋 → R a function, and𝐶 : Θ⇒ 𝑋

a correspondence. Define the extended value function �̄� : Θ → R by

�̄�(\) = sup{ 𝑓 (\, 𝑥) : 𝑥 ∈ 𝐶 (\)}

1The value function is a well-defined function by the extreme value theorem.
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with the convention that sup ∅ = −∞. Then:
1. if 𝑓 is lower semicontinuous and 𝐶 is lower hemicontinuous, then the extended

value function �̄� is lower semicontinuous;
2. if 𝑓 is upper semicontinuous and 𝐶 is upper hemicontinuous with nonempty

compact values, then the extended value function �̄� is upper semicontinuous.

Proof. 1. We prove that {\ ∈ Θ : �̄�(\) > 𝛼} is open for any 𝛼 ∈ R. Let 𝛼 ∈ R.
Suppose there is \′ ∈ Θ such that �̄�(\′) > 𝛼, then 𝑓 (𝑥′, \′) > 𝛼 for some 𝑥′ ∈ 𝐶 (\′).
Since 𝑓 is lower semicontinuous, then 𝑊 = {(\, 𝑥) ∈ Θ × 𝑋 : 𝑓 (\, 𝑥) > 𝛼} is an open
neighborhood of (\′, 𝑥′). Thus there are open neighborhoods𝑈 of \′ and𝑉 of 𝑥′ such that
(𝑈 × 𝑉) ∩ Gr(𝐵) ⊆ 𝑊 . Define 𝐶𝑙 (𝐴) = {\ ∈ Θ : 𝐶 (\) ∩ 𝐴 ≠ ∅} for any 𝐴 ⊆ 𝑋 . Since
𝐶 is lower hemicontinuous and 𝑉 ∩𝐶 (\′) ≠ ∅, the set 𝑁 = 𝑈 ∩𝐶𝑙 (𝑉) is a neighborhood
of \′. By definition of 𝐶𝑙 (𝑉), for each \ ∈ 𝑁 , there is some 𝑥 ∈ 𝐶 (\) ∩ 𝑉 , so that
(\, 𝑥) ∈ (𝑈 × 𝑉) ∩ Gr(𝐶) ⊆ 𝑊 . Then 𝑓 (\, 𝑥) > 𝛼, so �̄�(\) > 𝛼 for each \ ∈ 𝑁 . Thus
𝑁 ⊆ {\ ∈ Θ : �̄�(\) > 𝛼}. Therefore, {\ ∈ Θ : �̄�(\) > 𝛼} is open.

2. Note that, by the extreme value theorem for upper semicontinuous functions,
�̄�(\) = 𝑣(\) := max{ 𝑓 (\, 𝑥) : 𝑥 ∈ 𝐶 (\)} for all \ ∈ Θ. We prove that {\ ∈ Θ : 𝑣(\) < 𝛼}
is open for any 𝛼 ∈ R. Let 𝛼 ∈ R. Suppose there is \′ such that 𝑣(\′) < 𝛼. Define
𝑊 = {(\, 𝑥) ∈ Θ × 𝑋 : 𝑓 (\, 𝑥) < 𝛼}. For each 𝑥 ∈ 𝐶 (\′), we have (\′, 𝑥) ∈ 𝑊 . Since 𝑓

is upper semicontinuity, the set 𝑊 is open. Thus, for each 𝑥 ∈ 𝐶 (\′), there are an open
neighborhood𝑈𝑥 of \′ and an open neighborhood𝑉𝑥 of 𝑥 such that (𝑈𝑥×𝑉𝑥)∩Gr(𝐶) ⊆ 𝑊 .
The family {𝑉𝑥 : 𝑥 ∈ 𝐶 (\′)} then forms an open cover of the compact set 𝐶 (\′). By
compactness, we can extract a finite open subcover {𝑉𝑥1 , . . . , 𝑉𝑥𝑛} of 𝐶 (\′). Define
𝑈 =

⋂𝑛
𝑖=1 𝑈𝑥𝑖 and 𝑉 =

⋃𝑛
𝑖=1 𝑉𝑥𝑖 . Then (𝑈 ×𝑉) ∩ Gr(𝐶) ⊆ 𝑊 . Define 𝐶𝑢 (𝐴) = {\ ∈ Θ :

𝐶 (\) ⊆ 𝐴} for any 𝐴 ⊆ 𝑋 . By upper hemicontinuity of 𝐶, the set 𝑁 = 𝑈 ∩ 𝐶𝑢 (𝑉) is an
open neighborhood of \′. For each \ ∈ 𝑁 , if 𝑥 ∈ 𝐶 (\), then (\, 𝑥) ∈ (𝑈×𝑉)∩Gr(𝐶) ⊆ 𝑊 ,
so 𝑓 (\, 𝑥) < 𝛼, and in particular, 𝑣(\) < 𝛼. Thus 𝑁 ⊆ {\ ∈ Θ : 𝑣(\) < 𝛼}. Therefore,
{\ ∈ Θ : 𝑣(\) < 𝛼} is open. □

Lemma 3. Let 𝑋 and Θ be topological spaces, and 𝐴 : Θ ⇒ 𝑋 and 𝐵 : Θ ⇒ 𝑋 corre-
spondences. If 𝐴 is upper hemicontinuous with compact values and 𝐵 has closed graph,
then the correspondence given by 𝐴 ∩ 𝐵 : Θ⇒ 𝑋 defined by (𝐴 ∩ 𝐵) (\) = 𝐴(\) ∩ 𝐵(\)
is upper hemicontinuous.

Proof. Let \ ∈ Θ. Suppose 𝐺 ⊆ 𝑋 is an open set such that (𝐴 ∩ 𝐵) (\) ⊆ 𝐺. We prove
that there is a neighborhood 𝑈\ of \ such that (𝐴 ∩ 𝐵) (𝑈\ ) ⊆ 𝐺.

If 𝐴(\) ⊆ 𝐺, then the result follows by upper hemicontinuity of 𝐴.
Suppose now that 𝐴(\) ⊈ 𝐺. Since 𝐵 is closed, for each 𝑥 ∈ 𝐴(\) \𝐺, there is an open

neighborhood 𝑈𝑥 ×𝑉𝑥 of (\, 𝑥) such that 𝑈𝑥 ×𝑉𝑥 ⊆ (Θ× 𝑋) \Gr(𝐶); that is, 𝑥′ ∉ 𝐵(\′)
whenever (\′, 𝑥′) ∈ 𝑈𝑥 × 𝑉𝑥 or, equivalently, 𝐵(𝑈𝑥) ∩ 𝑉𝑥 = ∅. The collection of sets
{𝐺}∪{𝑉𝑥 : 𝑥 ∈ 𝐴(\) \𝐺} forms an open cover of the compact set 𝐴(\). By compactness,
we can extract a finite open subcover {𝐺,𝑉𝑥1 , . . . , 𝑉𝑥𝑛}. Then, by upper hemicontinuity
of 𝐴, there is a neighborhood𝑈′

\
of \ such that 𝐴(𝑈′

\
) ⊆ 𝐺∪𝑉𝑥1 ∪· · ·∪𝑉𝑥𝑛 . Define𝑈\ =

𝑈′
\
∩𝑈𝑥1∩· · ·∩𝑈𝑥𝑛 . Then 𝐴(𝑈\ ) ⊆ 𝐺∪𝑉𝑥1∪· · ·∪𝑉𝑥𝑛 and 𝐵(𝑈\ )

⋂(𝑉𝑥1∪· · ·∪𝑉𝑥𝑛) = ∅.
Therefore (𝐴 ∩ 𝐵) (𝑈\ ) ⊆ 𝐺. □
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