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Theorem 1 (Riesz–Markov–Kakutani Representation Theorem (for Compact Metric
Spaces)). Let 𝑋 be a compact metric space and 𝜑 ∈ 𝐶 (𝑋)′ a continuous linear functional
on 𝐶 (𝑋). Then there exists a unique signed finite Borel measure 𝜇 ∈ M±

𝑓
(𝑋) on 𝑋 such

that for all 𝑓 ∈ 𝐶 (𝑋),
𝜑( 𝑓 ) =

∫
𝑋

𝑓 (𝑥) 𝑑𝜇(𝑥).

In this case, it holds that ∥𝜑∥ = |𝜇 | (𝑋). In particular,𝐶 (𝑋) andM±
𝑓
(𝑋) are isometrically

isomorphic.

Proof. The proof is divided in three steps. Step 1 will prove existence. Step 2 will prove
uniqueness. Step 3 will prove that ∥𝜑∥ = |𝜇 | (𝑋). Note that since 𝑋 is compact, the space
𝐶 (𝑋) can be normed, and so there is equivalence between boundedness and continuity
for functionals in the dual 𝐶 (𝑋)′.

Step 1. Write 𝜑 = 𝐿 − 𝐿′ by the Jordan decomposition for bounded functionals
where 𝐿 and 𝐿′ are positive bounded functionals. Then apply the Riesz representation
theorem for positive linear functionals to get positive finite measures 𝜇+ and 𝜇− such that
𝐿 ( 𝑓 ) =

∫
𝑓 𝑑𝜇+ and 𝐿′( 𝑓 ) =

∫
𝑓 𝑑𝜇−. Then 𝜇 = 𝜇+ − 𝜇− is a finite signed measure such

that 𝜑( 𝑓 ) =
∫
𝑓 𝑑𝜇 for all 𝑓 ∈ 𝐶 (𝑋).

Step 2. Suppose that there are 𝜇1, 𝜇2 ∈ M±
𝑓

such that
∫
𝑓 𝑑𝜇1 =

∫
𝑓 𝑑𝜇2 for all

𝑓 ∈ 𝐶 (𝑋). To show that 𝜇1 = 𝜇2, it is enough to show that 𝜇1(𝐹) = 𝜇2(𝐹) for all closed
sets 𝐹 ⊆ 𝑋 . To show this, it is enough to show for each 𝐹, there exists a sequence of
nonnegative functions { 𝑓𝑛} ⊆ 𝐶 (𝑋) such that 𝑓𝑛 → 1𝐹 as 𝑛→ ∞. Define ℎ𝑛 (𝑟) = 1−𝑛𝑟
for 0 ≤ 𝑟 ≤ 1/𝑛 and ℎ𝑛 (𝑟) = 0 for 𝑟 > 1/𝑛. Then 𝑓𝑛 (𝑥) = ℎ𝑛 (𝑑 (𝑥, 𝐹)) is continuous
with 𝑓𝑛 → 1𝐹 as 𝑛 → ∞. Then 𝜇1(𝐹) = 𝜇2(𝐹) follows from Lebesgue’s dominated
convergence and the uniqueness of limits.

Step 3. By the triangle inequality, we always have ∥𝜑∥ ≤ ∥𝐿∥+∥𝐿′∥ = 𝐿 (1)+𝐿′(1) =
|𝜇 | (𝑋). To prove the reverse inequality, take any function 𝑓 ∈ 𝐶 (𝑋) such that 0 ≤ 𝑓 ≤ 1.
Then ∥2𝜙 − 1∥ ≤ 1, and so ∥𝜑∥ ≥ 2𝜑( 𝑓 ) − 𝜑(1). Taking supremum over all such 𝑓 and
remembering the definition of 𝐿, we get ∥𝜑∥ ≥ 2𝐿 (1) − 𝜑(1) = 𝐿 (1) + 𝐿′(1) = |𝜇 | (𝑋).
This concludes the proof. □

Reference. T.RRTDC in Royden RA p.464. The first part is also in T.17.8. in Bass RAGS
p.180. While uniqueness follows from T.1.2. in Billingsley CPM p.8. The norm equality
follows from P.12. in Royden RA p.463. For a similar proof of a slightly more general
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result, see T.7.2. and T.7.17. in Folland RA p.212-223 or T.12.9.-10. in Teschl TRFA
p.363-364. A similar proof is T.2.14. in Rudin RCA p.40, but the proof is convoluted as it
hides inside some form of Carathéodory’s extension theorem. Another standard proof is
through the Daniell integral (see R.7.2. in Folland RA p.232) – see T.10.4. in Bogachev
MT2 p.111 or T.7.4.1. in Dudley RAP p.239.

Lemma 2 (Carathéodory’s (Extension) Theorem). If 𝜇∗ is an outer measure on 𝑋 ,
then the collection A of 𝜇∗-measurable sets is a 𝜎-algebra and the restriction of 𝜇∗ to A
is a complete measure.

Proof. Recall that a set 𝐴 ⊆ 𝑋 is said to be 𝜇∗-measurable for 𝜇∗ an outer measure if

𝜇∗(𝐸) = 𝜇∗(𝐸 ∩ 𝐴) + 𝜇∗(𝐸 ∩ 𝐴𝑐)

for all 𝐸 ⊆ 𝑋 . By definition of an outer measure, 𝜇∗(𝐸) ≤ 𝜇∗(𝐸 ∩ 𝐴) + 𝜇∗(𝐸 ∩ 𝐴𝑐),
hence 𝜇∗-measurability more simply holds if 𝜇∗(𝐸) ≥ 𝜇∗(𝐸 ∩ 𝐴) + 𝜇∗(𝐸 ∩ 𝐴𝑐).

We first show that A is an algebra. If 𝐴 ∈ A, then 𝐴𝑐 ∈ A by symmetry of
𝜇∗-measurability with respect to 𝐴 and 𝐴𝑐. Suppose that 𝐴, 𝐵 ∈ A and 𝐸 ⊆ 𝑋 , then

𝜇∗(𝐸) = 𝜇∗(𝐸 ∩ 𝐴) + 𝜇∗(𝐸 ∩ 𝐴𝑐)
= 𝜇 ∗ (𝐸 ∩ 𝐴 ∩ 𝐵) + 𝜇 ∗ (𝐸 ∩ 𝐴 ∩ 𝐵𝑐) + 𝜇 ∗ (𝐸 ∩ 𝐴𝑐 ∩ 𝐵) + 𝜇 ∗ (𝐸 ∩ 𝐴𝑐 ∩ 𝐵𝑐).

Since 𝐴 ∪ 𝐵 ⊆ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐵𝑐) ∪ (𝐴𝑐 ∩ 𝐵) and 𝐴𝑐 ∩ 𝐵𝑐 = (𝐴 ∪ 𝐵)𝑐, then

𝜇∗(𝐸) ≥ 𝜇∗(𝐸 ∩ (𝐴 ∪ 𝐵)) + 𝜇∗(𝐸 ∩ (𝐴 ∪ 𝐵)𝑐).

This shows that 𝐴 ∪ 𝐵 ∈ A, and thus A is an algebra.
We now show that A is a 𝜎-algebra. Let 𝐴𝑖 be pairwise disjoint sets in A, 𝐵𝑛 =⋃𝑛

𝑖=1 𝐴𝑖 , and 𝐵 =
⋃∞
𝑖=1 𝐴𝑖 . If 𝐸 ⊆ 𝑋 , then

𝜇∗(𝐸 ∩ 𝐵𝑛) = 𝜇∗(𝐸 ∩ 𝐵𝑛 ∩ 𝐴𝑛) + 𝜇∗(𝐸 ∩ 𝐵𝑛 ∩ 𝐴𝑐𝑛)
= 𝜇∗(𝐸 ∩ 𝐴𝑛) + 𝜇∗(𝐸 ∩ 𝐵𝑛−1).

Since 𝜇∗(𝐸 ∩ 𝐵𝑛−1) = 𝜇∗(𝐸 ∩ 𝐴𝑛𝑛 − 1) + 𝜇∗(𝐸 ∩ 𝐵𝑛−1), we obtain recursively that

𝜇∗(𝐸 ∩ 𝐵𝑛) ≥
𝑛∑︁
𝑖=1

𝜇∗(𝐸 ∩ 𝐴𝑖).

Since 𝐵𝑛 ∈ A, we have

𝜇∗(𝐸) = 𝜇∗(𝐸 ∩ 𝐵𝑛) + 𝜇∗(𝐸 ∩ 𝐵𝑐𝑁 ) ≥
𝑛∑︁
𝑖=1

𝜇∗(𝐸 ∩ 𝐴𝑖) + 𝜇∗(𝐸 ∩ 𝐵𝑐𝑛).
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Taking 𝑛→ ∞, we obtain that

𝜇∗(𝐸) ≥
∞∑︁
𝑖=1

𝜇∗(𝐸 ∩ 𝐴𝑖) + 𝜇∗(𝐸 ∩ 𝐵𝑐)

≥ 𝜇∗(
∞⋃
𝑖=1

𝐸 ∩ 𝐴𝑖) + 𝜇∗(𝐸 ∩ 𝐵𝑐)

= 𝜇∗(𝐸 ∩ 𝐵) + 𝜇∗(𝐸 ∩ 𝐵𝑐)
≥ 𝜇∗(𝐸).

Therefore 𝐵 ∈ A. Now, take 𝐶1, 𝐶2, · · · ∈ A and define 𝐷1 = 𝐴1 and for any 𝑖 ≥ 2,
𝐷𝑖 = 𝐶𝑖 −

⋃𝑖−1
𝑗=1 𝐷 𝑗 . Since 𝐶𝑖 ∈ A and A is an algebra, we have that 𝐷𝑖 = 𝐶𝑖 ∩ (𝐶1 ∪

· · · ∪𝐶𝑖−1)𝑐 ∈ A. Moreover, the 𝐷𝑖 are pairwise disjoint, so it follows from the previous
result that

∞⋃
𝑖=1
𝐶𝑖 =

∞⋃
𝑖=1

𝐷𝑖 ∈ A

and
⋂∞
𝑖=1𝐶𝑖 = (⋃∞

𝑖=1𝐶
𝑐
𝑖
)𝑐 ∈ A, so A is a 𝜎-algebra.

We now show that 𝜇∗ restricted to A is a measure. From a previous display, we
showed that

𝜇∗(𝐸) =
∞∑︁
𝑖=1

𝜇∗(𝐸 ∩ 𝐴𝑖) + 𝜇∗(𝐸 ∩ 𝐵𝑐).

Taking 𝐸 = 𝐵, we obtain

𝜇∗(𝐵) =
∞∑︁
𝑖=1

𝜇∗(𝐴𝑖).

This proves that 𝜇∗ is countably additive on A.
We finally show that this restriction is complete. If 𝜇∗(𝐴) = 0 and 𝐸 ⊆ 𝑋 , then

𝜇∗(𝐸) ≤ 𝜇∗(𝐸 ∩ 𝐴) + 𝜇∗(𝐸 ∩ 𝐴𝑐) = 𝜇∗(𝐸 ∩ 𝐴𝑐) ≤ 𝜇∗(𝐸),

and so 𝐴 ∈ A, which proves that the restriction of 𝜇∗ to A is complete. □

Reference. T.1.11. in Folland RA p.29 or T.4.6. in Bass RAGS p.26. The naming
conventions differ: the theorem as stated is the main ingredient of what is usually known
as Caratheodory’s extension theorem which starts from premeasure on rings.

Lemma 3 (Urysohn’s Lemma for Metric Spaces). Let 𝐴 and 𝐵 be two disjoint closed
subsets of a metric space 𝑋 . Then there exists a continuous real-valued function 𝑓 : 𝑋 →
[0, 1] such that 𝑓 = 0 on 𝐴 and 𝑓 = 1 on 𝐵.

Proof. If 𝑑 denotes the metric on 𝑋 , then the function

𝑓 (𝑥) = 𝑑 (𝑥, 𝐴)
𝑑 (𝑥, 𝐵) + 𝑑 (𝑥, 𝐴)

is continuous, with values in [0, 1], and satisfies 𝑓 = 0 on 𝐴 and 𝑓 = 1 on 𝐵. □

Reference. E.B.20. in Teschl TRFA p.541.
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Lemma 4 (Partition of Unity). Let 𝑋 be a compact metric space. If 𝐾 is a compact subset
of 𝑋 and 𝐺1, 𝐺2, . . . , 𝐺𝑛 is an open cover of 𝐾 , then there exist continuous functions
𝑔𝑖 : 𝑋 → [0, 1] with support contained in 𝐺𝑖 , for 𝑖 = 1, 2, . . . , 𝑛, such that

𝑛∑︁
𝑖=1

𝑔𝑖 (𝑥) = 1

for all 𝑥 ∈ 𝐾 .

Proof. Let 𝑥 ∈ 𝐾 . There is 𝑖 ∈ {1, 2, . . . , 𝑛} such that 𝑥 ∈ 𝐺𝑖 . Singletons are closed,
so, by Urysohn’s lemma, there exists a continuous function ℎ𝑥 : 𝑋 → [0, 1] with support
contained in 𝐺𝑖 such that ℎ𝑥 (𝑥) = 1. Define 𝑁𝑥 = {𝑦 ∈ 𝑋 : ℎ𝑥 (𝑦) > 0}. Since ℎ𝑥 is
continuous, then 𝑁𝑥 is open, 𝑥 ∈ 𝑁𝑥 , and 𝑁 𝑥 ⊆ 𝐺𝑖 . The collection {𝑁𝑥 : 𝑥 ∈ 𝐾} is an
open cover for the compact set 𝐾 , so there exists a finite open subcover {𝑁𝑥1 , . . . , 𝑁𝑥𝑚}
of 𝐾 . For each 𝑖 ∈ {1, 2, . . . , 𝑛}, define 𝐹𝑖 =

⋃{𝑁 𝑥 𝑗 : 𝑁 𝑥 𝑗 ⊆ 𝐺𝑖}. Each 𝐹𝑖 is closed,
and so compact since 𝑋 is compact. By definition, 𝐹𝑖 ⊆ 𝐺𝑖 . By Urysohn’s lemma, we
can choose continuous functions 𝑓𝑖 : 𝑋 → [0, 1] with support contained in 𝐺𝑖 such that
𝑓𝑖 = 1 on 𝐹𝑖 . Now define

𝑔1 = 𝑓1,

𝑔2 = (1 − 𝑓1) 𝑓2,
. . .

𝑔𝑛 = (1 − 𝑓1) (1 − 𝑓2) . . . (1 − 𝑓𝑛−1) 𝑓𝑛.

By definition, 𝑔𝑖 is a continuous function, with values in [0, 1], and support contained in
𝐺𝑖 . Moreover, 𝑔1 + 𝑔2 = 1 − (1 − 𝑓1) (1 − 𝑓2), and, by induction,

𝑔1 + 𝑔2 + · · · + 𝑔𝑛 = 1 − (1 − 𝑓1) (1 − 𝑓2) . . . (1 − 𝑓𝑛).

If 𝑥 ∈ 𝐾 , then 𝑥 ∈ 𝑁𝑥 𝑗 for some 𝑗 , so 𝑥 ∈ 𝐹𝑖 for some 𝑖. Then 𝑓𝑖 (𝑥) = 1, which implies
that

∑𝑛
𝑖=1 𝑔𝑘 (𝑥) = 1. □

Reference. P.17.2. in Bass RAGS p.172.

Lemma 5 (Riesz Representation Theorem for Positive Functionals). Let 𝑋 be a compact
metric space and 𝐿 a positive linear functional on 𝐶 (𝑋). Then there exists a Borel
measure 𝜇 ∈ M 𝑓 (𝑋) on 𝑋 such that for all 𝑓 ∈ 𝐶 (𝑋),

𝐿 ( 𝑓 ) =
∫
𝑋

𝑓 (𝑥) 𝑑𝜇(𝑥).

Proof. Define for any open set 𝐺 ⊆ 𝑋 ,

F𝐺 = { 𝑓 ∈ 𝐶 (𝑋) : 0 ≤ 𝑓 ≤ 1, supp( 𝑓 ) ⊆ 𝐺},

𝑙 (𝐺) = sup{𝐿 ( 𝑓 ) : 𝑓 ∈ F𝐺},

and for any set 𝐸 ⊆ 𝑋 ,

𝜇∗(𝐸) = inf{𝑙 (𝐺) : 𝐸 ⊆ 𝐺, 𝐺 open}.
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The proof is divided in 5 steps. Step 1 will show that 𝜇∗ is an outer measure. Step
2 will show that every open set is 𝜇∗-measurable. Step 3 will be an application of the
Caratheodory extension theorem to obtain a measure 𝜇 from 𝜇∗. Step 4 will establish
some regularity properties of 𝜇. Step 5 will show that the equality in the display of the
theorem holds using the regularity properties established in Step 4.

Step 1. We show that 𝜇∗ is an outer measure. The set F∅ only contains the zero
function, so 𝑙 (∅) = 0, and thus 𝜇∗(0) = 0. If 𝐴 ⊆ 𝐵, then 𝜇∗(𝐴) ≤ 𝜇∗(𝐵) by definition.
Now, let 𝐺1, 𝐺2, . . . be open sets. For any open set 𝐻, 𝑙 (𝐻) = 𝜇∗(𝐻). Let 𝐺 =

⋃
𝑖 𝐺𝑖

and let 𝑓 be any element of F𝐺 with support denoted by 𝐾 . Since 𝑋 is compact, 𝐾 is
compact since closed. Moreover, {𝐺𝑖} is an open cover for 𝐾 , so there exists 𝑛 such that
𝐾 ⊆ ⋃𝑛

𝑖=1𝐺𝑖 . Let {𝑔𝑖} be a partition of unity for 𝐾 subordinate to {𝐺𝑖}𝑛𝑖=1. Since 𝐾 is
the support of 𝑓 , we have 𝑓 =

∑𝑛
𝑖=1 𝑓 𝑔𝑖 . Since 𝑔𝑖 ∈ F𝐺𝑖

and 𝑓 ≤ 1, then 𝑓 𝑔𝑖 ∈ F𝐺𝑖
.

Therefore,

𝐿 ( 𝑓 ) =
𝑛∑︁
𝑖=1

𝐿 ( 𝑓 𝑔𝑖) ≤
𝑛∑︁
𝑖=1

𝜇∗(𝐺𝑖) ≤
𝑛∑︁
𝑖=1

𝜇∗(𝐺𝑖).

Taking the supremum over 𝑓 ∈ F𝐺 ,

𝜇∗(𝐺) = 𝑙 (𝐺) ≤
∞∑︁
𝑖=1

𝜇∗(𝐺𝑖).

Finally, let 𝐴1, 𝐴2, . . . be arbitrary subsets of 𝑋 . Let 𝜀 > 0. Choose 𝐺𝑖 open such that
𝑙 (𝐺𝑖) ≤ 𝜇∗(𝐴𝑖) + 𝜀−𝑖 . Then

𝜇∗(
∞⋃
𝑖=1

𝐴𝑖) ≤ 𝜇∗(
∞⋃
𝑖=1
𝐺𝑖) ≤

∞∑︁
𝑖=1

𝜇∗(𝐺𝑖)
∞∑︁
𝑖=1

𝜇∗(𝐴𝑖) + 𝜀.

Since 𝜀 is arbitrary, we have that 𝜇∗ is countably subadditive. This proves that 𝜇∗ is an
outer measure.

Step 2. We show that every open set is 𝜇∗-measurable. Suppose𝐺 is open and 𝐸 ⊆ 𝑋 .
It suffices to show that 𝜇∗(𝐸) ≥ 𝜇∗(𝐸 ∩ 𝐺) + 𝜇∗(𝐸 ∩ 𝐺𝑐). First suppose that 𝐸 is open.
Take 𝑓 ∈ F𝐸∩𝐺 such that 𝐿 ( 𝑓 ) > 𝑙 (𝐸 ∩𝐺) − 𝜀/2. Denote 𝐾 the support of 𝑓 . Since 𝐾𝑐

is open, we can choose 𝑔 ∈ F𝐸∩𝐾𝑐 such that 𝐿 (𝑔) > 𝑙 (𝐸 ∩ 𝐾𝑐) − 𝜀/2. Then 𝑓 + 𝑔 ∈ F𝐸
and

𝑙 (𝐸) ≥ 𝐿 ( 𝑓 + 𝑔)
≤ 𝑙 (𝐸 ∩ 𝐺) + 𝑙 (𝐸 ∩ 𝐾𝑐) − 𝜀
= 𝜇∗(𝐸 ∩ 𝐺) + 𝜇∗(𝐸 ∩ 𝐾𝑐) − 𝜀
≥ 𝜇∗(𝐸 ∩ 𝐺) + 𝜇∗(𝐸 ∩ 𝐺𝑐) − 𝜀.

Since 𝜀was arbitrary, we have 𝜇∗(𝐸) ≥ 𝜇∗(𝐸∩𝐺)+𝜇∗(𝐸∩𝐺𝑐) when 𝐸 is open. Suppose
now that 𝐸 is not open. Let 𝜀 > 0. Take 𝐻 open such that 𝐸 ⊆ 𝐻 and 𝑙 (𝐻) < 𝜇∗(𝐸) + 𝜀.
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Then

𝜇∗(𝐸) + 𝜀 ≥ 𝑙 (𝐻)
= 𝜇∗(𝐻)
≥ 𝜇∗(𝐻 ∩ 𝐺) + 𝜇∗(𝐻 ∩ 𝐺𝑐)
≥ 𝜇∗(𝐸 ∩ 𝐺) + 𝜇∗(𝐸 ∩ 𝐺𝑐).

Since 𝜀 was arbitrary, we have 𝜇∗(𝐸) ≥ 𝜇∗(𝐸 ∩ 𝐺) + 𝜇∗(𝐸 ∩ 𝐺𝑐). This concludes that
all open sets are 𝜇∗-measurable.

Step 3. By Caratheodory’s extension theorem, the restriction of 𝜇∗ to the Borel
𝜎-algebra B on 𝑋 is a measure on B. By definition, if 𝐺 is open, 𝜇(𝐺) = 𝜇∗(𝐺) = 𝑙 (𝐺).

Step 4. We show that if 𝐾 is compact, 𝑓 ∈ 𝐶 (𝑋), and 𝑓 ≥ 1𝐾 , then 𝐿 ( 𝑓 ) ≥ 𝜇(𝐾).
Let 𝜀 > 0 and define

𝐺 = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) > 1 − 𝜀},

which is open. Take 𝑔 ∈ F𝐺 . Then 𝑔 ≤ 1𝐾 ≤ 𝑓 /(1− 𝜀), so (1− 𝜀)−1 𝑓 − 𝑔 ≥ 0. Because
𝐿 is a positive linear functional, 𝐿 ((1 − 𝜀)−1 𝑓 − 𝑔) ≥ 0. Thus 𝐿 (𝑔) ≤ 𝐿 ( 𝑓 )/(1 − 𝜀).
This is true for all 𝑔 ∈ F𝐺 , then 𝜇(𝐺) ≤ 𝐿 ( 𝑓 )/(1 − 𝜀). Since 𝑓 ≥ 1𝐾 , 𝜇(𝐾) ≤ 𝜇(𝐺). It
follows that 𝜇(𝐾) ≤ 𝐿 ( 𝑓 )/(1 − 𝜀). Since 𝜀 was arbitrary, 𝜇(𝐾) ≤ 𝐿 ( 𝑓 ).

Step 5. We finally show that 𝐿 ( 𝑓 ) =
∫
𝑋
𝑓 (𝑥) 𝑑𝜇(𝑥). Without loss of generality, we can

take 0 ≤ 𝑓 ≤ 1. Indeed, by writing 𝑓 = 𝑓 +− 𝑓 − and using linearity of 𝐿, we may suppose
𝑓 ≥ 0. Moreover, since 𝑋 is compact, 𝑓 is bounded, so we can multiply by a constant and
use linearity allowing us to take 𝑓 ≤ 1. Now, let 𝑛 ≥ 1 and 𝐾𝑖 = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) ≥ 𝑖/𝑛}.
Since 𝑓 is continuous, each 𝐾𝑖 is closed, and hence compact since 𝑋 is compact. Note
that 𝐾0 = 𝑋 . Define

𝑓𝑖 (𝑥) =


0, if 𝑥 ∈ 𝐾𝑐

𝑖−1,

𝑓 (𝑥) − 𝑖−1
𝑛

if 𝑥 ∈ 𝐾𝑖−1 − 𝐾𝑖
1
𝑛

if 𝑥 ∈ 𝐾𝑖 .

Note that 𝑓 =
∑𝑛
𝑖=1 𝑓𝑖 and 1𝐾𝑖

≤ 𝑛 𝑓𝑖 ≤ 1𝐾𝑖−1 . Therefore

1
𝑛
𝜇(𝐾𝑖) ≤

∫
𝑓𝑖 𝑑𝜇 ≤ 1

𝑛
𝜇(𝐾𝑖−1),

and so
1
𝑛

𝑛∑︁
𝑖=1

𝜇(𝐾𝑖) ≤
∫

𝑓 𝑑𝜇 ≤ 1
𝑛

𝑛−1∑︁
𝑖=0

𝜇(𝐾𝑖).

Let 𝜀 > 0 and 𝐺 be an open set containing 𝐾𝑖−1 such that 𝜇(𝐺) < 𝜇(𝐾𝑖−1) + 𝜀. Then
𝑛 𝑓𝑖 ∈ F𝐺 , so

𝐿 (𝑛 𝑓𝑖) ≤ 𝜇(𝐺) ≤ 𝜇(𝐾𝑖−1) + 𝜀.

Since 𝜀 was arbitrary, 𝐿 ( 𝑓𝑖) ≤ 𝜇(𝐾𝑖−1)/𝑛. By Step 4, 𝐿 (𝑛 𝑓𝑖) ≥ 𝜇(𝐾𝑖), and thus

1
𝑛

𝑛∑︁
𝑖=1

𝜇(𝐾𝑖) ≤ 𝐿 ( 𝑓 ) ≤ 1
𝑛

𝑛−1∑︁
𝑖=0

𝜇(𝐾𝑖).
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It follows that ���𝐿 ( 𝑓 ) − ∫
𝑓 𝑑𝜇

��� ≤ 1
𝑛
(𝜇(𝐾0) − 𝜇(𝐾𝑛)) ≤

𝜇(𝑋)
𝑛

.

Since 𝜇(𝑋) = 𝐿 (1) < ∞ and 𝑛 was arbitrary, the equality is proved. □

Reference. T.17.3. in Bass RAGS p.174.

Lemma 6 (Jordan Decomposition for Bounded Functionals). Let 𝑋 be a compact metric
space. If 𝐼 is a bounded linear functional on 𝐶 (𝑋), then there exist positive bounded
linear functionals 𝐽 and 𝐽′ such that 𝐼 = 𝐽 − 𝐽′.

Proof. For 𝑔 ∈ 𝐶 (𝑋) with 𝑔 ≥ 0, define

𝐽 (𝑔) = sup{𝐼 ( 𝑓 ) : 𝑓 ∈ 𝐶 (𝑋), 0 ≤ 𝑓 ≤ 𝑔}.

Since 𝐼 (0) = 0, then 𝐽 (𝑔) ≥ 0. Since |𝐼 ( 𝑓 ) | ≤ ∥𝐼 ∥∥ 𝑓 ∥ ≤ ∥𝐼 ∥∥𝑔∥ if 0 ≤ 𝑓 ≤ 𝑔, then
|𝐽 (𝑔) | ≤ ∥𝐼 ∥∥𝑔∥. Moreover, it holds that 𝐽 (𝑐𝑔) = 𝑐𝐽 (𝑔) if 𝑐 ≥ 0. We now prove
that 𝐽 (𝑔1 + 𝑔2) = 𝐽 (𝑔1) + 𝐽 (𝑔2) if 𝑔1, 𝑔2 ∈ 𝐶 (𝑋) with 𝑔1, 𝑔2 ≥ 0. If 0 ≤ 𝑓1 ≤ 𝑔1
and 0 ≤ 𝑓2 ≤ 𝑔2 with 𝑓1, 𝑓2, 𝑔1, 𝑔2 ∈ 𝐶 (𝑋), we have 0 ≤ 𝑓1 + 𝑓2 ≤ 𝑔1 + 𝑔2, so
𝐽 (𝑔1 + 𝑔2) ≥ 𝐼 ( 𝑓1 + 𝑓2) = 𝐼 ( 𝑓1) + 𝐼 ( 𝑓2). By taking the supremum over all 𝑓1 and all 𝑓2,
we get 𝐽 (𝑔1 + 𝑔2) ≥ 𝐽 (𝑔1) + 𝐽 (𝑔2). Now, suppose that 0 ≤ 𝑓 ≤ 𝑔1 + 𝑔2 with 𝑓 , 𝑔1, 𝑔2 ≥ 0
and 𝑓 , 𝑔1, 𝑔2 ∈ 𝐶 (𝑋). Define 𝑓1 = 𝑓 ∧ 𝑔1 and 𝑓2 = 𝑓 − 𝑓1. Note that 𝑓1, 𝑓2 ∈ 𝐶 (𝑋).
Since 𝑓1 ≤ 𝑓 , then 𝑓2 ≥ 0. If 𝑓 (𝑥) ≤ 𝑔1(𝑥), we have 𝑓 (𝑥) = 𝑓1(𝑥) ≤ 𝑓1(𝑥) + 𝑔2(𝑥). If
𝑓 (𝑥) > 𝑔1(𝑥), we have 𝑓 (𝑥) ≤ 𝑔1(𝑥) + 𝑔2(𝑥) = 𝑓1(𝑥) + 𝑔2(𝑥). Hence 𝑓 ≤ 𝑓1 + 𝑔2, so
𝑓2 = 𝑓 − 𝑓1 ≤ 𝑔2. Thus 𝐼 ( 𝑓 ) = 𝐼 ( 𝑓1) + 𝐼 ( 𝑓2) ≤ 𝐽 (𝑔1) + 𝐽 (𝑔2). Taking the supremum
over 𝑓 ∈ 𝐶 (𝑋) with 0 ≤ 𝑓 ≤ 𝑔1 + 𝑔2, we get 𝐽 (𝑔1 + 𝑔2) ≤ 𝐽 (𝑔1) + 𝐽 (𝑔2). It follows that
𝐽 (𝑔1 + 𝑔2) ≤ 𝐽 (𝑔1) + 𝐽 (𝑔2).

Now define for any 𝑓 ∈ 𝐶 (𝑋) (not necessarily non-negative),

𝐽 ( 𝑓 ) = 𝐽 ( 𝑓 +) − 𝐽 ( 𝑓 −).

Then additivity, homogeneity, positivity, and boundedness of 𝐽 for 𝑓 follow directly from
that of 𝐽 on R+ for 𝑓 + and 𝑓 − proved above.

Finally, define 𝐽′ = 𝐽 − 𝐼. Additivity, homogeneity, and boundedness of 𝐽 follows
from that of 𝐽 and 𝐼. For positivity, note that if 𝑓 ≥ 0, then 𝐼 ( 𝑓 ) ≤ 𝐽 ( 𝑓 ). This concludes
the proof. □

Reference. P.17.7. in Bass RAGS p.179 or L.7.15. in Folland RA p.221.
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