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To prove Prokhorov’s theorem, we use the Riesz(–Markov–Kakutani) representation
theorem which was proved in Lecture 13.

Theorem 1 (Prokhorov’s Theorem). Let (𝑋, 𝑑) be a metric space, M1(𝑋) the space of
all Borel probability measures endowed with the topology of weak convergence, and N a
subset of M1(𝑋).

1. If N is tight, then N is relatively sequentially compact.
2. If (𝑋, 𝑑) is Polish and N is relatively sequentially compact, then N is tight.

Proof. 2. Suppose that N is sequentially compact and (𝑋, 𝑑) is Polish. We first claim
that if 𝑈1,𝑈2, . . . are opens sets in 𝑋 that cover 𝑋 and if 𝜀 > 0, then there exists a 𝑘 ≥ 1
such that for all 𝜇 ∈ N ,

𝜇(
𝑘⋃
𝑖=1
𝑈𝑖) > 1 − 𝜀.

By contradiction, suppose that for every 𝑘 ≥ 1 there is a 𝜇𝑘 ∈ N such that 𝜇𝑘 (
⋃𝑘

𝑖=1𝑈𝑖) ≤
1 − 𝜀. Since N is sequentially compact, there is a 𝜇 ∈ N and a subsequence such that
𝜇𝑘𝑙

𝑤−→ 𝜇. For any 𝑛 ≥ 1,
⋃𝑛

𝑖=1𝑈𝑖 is open, so

𝜇(
𝑛⋃
𝑖=1
𝑈𝑖) ≤ lim inf

𝑙→∞
𝜇𝑘𝑙 (

𝑛⋃
𝑖=1
𝑈𝑖) ≤ lim inf

𝑙→∞
𝜇𝑘𝑙 (

𝑘𝑙⋃
𝑖=1
𝑈𝑖) ≤ 1 − 𝜀.

But
⋃∞

𝑖=1𝑈𝑖 = 𝑋 , so 𝜇(⋃𝑛
𝑖=1𝑈𝑖) → 𝜇(𝑋) = 1 as 𝑛 → ∞, a contradiction which proves

the claim.
Now let 𝜀 > 0. Take 𝐷 = {𝑥1, 𝑥2, . . . } dense in 𝑋 . For every 𝑚 ≥ 1, the open balls

𝐵1/𝑚(𝑥𝑖), 𝑖 = 1, 2, . . . , cover 𝑋 , so by the claim there is a 𝑘𝑚 ≥ 1 such that for all 𝜇 ∈ N ,

𝜇(
𝑘𝑚⋃
𝑖=1

𝐵1/𝑚(𝑥𝑖)) > 1 − 𝜀2−𝑚.

Take

𝐾 :=
∞⋂

𝑚=1

𝑘𝑚⋃
𝑖=1

𝐵1/𝑚(𝑥𝑖).

Then 𝐾 is closed and for each 𝛿 > 0, we can take 𝑚 > 1/𝛿 and obtain 𝐾 ⊆ ⋃𝑘𝑚
𝑖=1 𝐵𝛿 (𝑥𝑖)
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so that 𝐾 is totally bounded. Since 𝑋 is complete, 𝐾 is compact. Now for each 𝜇 ∈ N ,

𝜇(𝑋 \ 𝐾) = 𝜇
( ∞⋃
𝑚=1

[ 𝑘𝑚⋃
𝑖=1

𝐵1/𝑚(𝑥𝑖)
]𝑐)

≤
∞∑︁

𝑚=1

𝜇

( [ 𝑘𝑚⋃
𝑖=1

𝐵1/𝑚(𝑥𝑖)
]𝑐)

=

∞∑︁
𝑚=1

(
1 − 𝜇

( 𝑘𝑚⋃
𝑖=1

𝐵1/𝑚(𝑥𝑖)
))

<

∞∑︁
𝑚=1

𝜀2−𝑚 = 𝜀.

This proves that N is tight.
(1.) Suppose that N is tight. Thus, for every 𝑛 ∈ N, there is a compact set 𝐾𝑛 ⊆ 𝑋

such that 𝜇(𝐾𝑛) ≥ 1− 𝑛−1 for all 𝜇 ∈ N . Define 𝑋0 :=
⋃

𝑛≥1 𝐾𝑛. Then 𝜇(𝑋0) = 1 for all
𝜇 ∈ N (and so there is no of loss of generality in assuming that N ⊆ M1(𝑋0)). Since
each 𝐾𝑛 is compact, (we can take a countable dense for each and so) 𝑋0 is separable. By
Lemma 8, 𝑋0 is homeomorphic to a measurable subset of a compact metric space, i.e., it
can be viewed as a subset of a compact metric space 𝑋̃ .

We now considerN ⊆ M1(𝑋0) as a subset of the spaceM1( 𝑋̃), which is sequentially
compact with respect to the topology of weak convergence by Lemma 7. Every sequence
(𝜇𝑛)𝑛∈N inN has thus a weakly convergent subsequence (𝜇𝑛𝑘 )𝑘∈Nwith limit 𝜇̃ ∈ M1( 𝑋̃).
To finish the proof, we need to show that 𝜇̃(𝑋0) = 1, since then there is a 𝜇 ∈ M1(𝑋)
agreeing with 𝜇̃ on 𝑋0 such that 𝜇(𝑋 \ 𝑋0) = 0 and so 𝜇𝑛𝑘

𝑤−→ 𝜇 in M1(𝑋). Indeed, by
portmanteau, we have

𝜇̃(𝑋0) ≥ 𝜇̃(𝐾𝑁 ) ≥ lim sup
𝑘→∞

𝜇𝑛𝑘 (𝐾𝑁 ) ≥ 1 − 𝑁−1

and the claim follows by letting 𝑁 → ∞. This concludes the proof. □

Reference. T.5.2. in van Gaans’ notes p.14 or T.6.26. in Cerny’s notes p.49 or T.1.34. in
Méliot’s notes p.20.

Remark. There are several ways to prove the direct implication of Prokhorov’s theorem
which is the difficult part of the theorem: (a) one measure-theoretic way by construction
of the weak limit using a diagonal argument and then following similar steps as in
Carathéodory’s theorem (see T.5.1. in CPM Billingsley p.59); (b) one functional-analytic
way where it is first proved that compactness of the initial space implies compactness of
the set of finite Borel measures on the space (see T.5.2. in van Gaans’ notes p.14 or T.6.26.
in Cerny’s notes p.49). Another proof consists in extending the result from R𝑑 (proved
as in Helly’s theorem or as in (a) using a diagonal argument) to RN and then embedding
𝑋 into RN (see T.23.2. in Kallenberg FMP p.507).

Remark. The direct implication (1.) is often stated for 𝑋 separable. There is no difference
in assuming separability since "once you have a tight family, then all those measures live
on a separable subset of 𝑋 anyway, so the rest of the space is irrelevant and might as well
not be there" (Nathaniel Eldredge). See the proof for the details of the argument.
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Lemma 2 (Portmanteau Theorem). Let 𝑋 be a metric space and 𝜇, 𝜇1, 𝜇2, · · · ∈ M1(𝑋)
be Borel probability measures on 𝑋 . Then the following propositions are equivalent:

1. 𝜇𝑛
𝑤−→ 𝜇;

2. for all bounded and uniformly continuous function 𝑓 on 𝑋 , lim𝑛→∞
∫
𝑓 𝑑𝜇𝑛 =∫

𝑓 𝑑𝜇;
3. for all closed sets 𝐹 ⊆ 𝑋 , lim sup𝑛→∞ 𝜇𝑛 (𝐹) ≤ 𝜇(𝐹);
4. for all open sets 𝐺 ⊆ 𝑋 , lim inf𝑛→∞ 𝜇𝑛 (𝐹) ≥ 𝜇(𝐹);
5. for all Borel sets 𝐴 ∈ B(𝑋) with 𝜇(𝜕𝐴) = 0, lim𝑛→∞ 𝜇𝑛 (𝐴) = 𝜇(𝐴).

Proof. The implication (1) =⇒ (2) is clear and the equivalence (3) ⇐⇒ (4) as well (by
taking complement).

(2) =⇒ (3): Fix 𝐹 ⊆ 𝑋 nonempty closed. Let 𝑈𝑚 := {𝑥 ∈ 𝑋 : 𝑑 (𝑥, 𝐹) < 1/𝑚}
for any 𝑚 ≥ 1 (where 𝑑 (𝑥, 𝐴) := inf𝑎∈𝐴 𝑑 (𝑥, 𝑎) if 𝐴 ≠ ∅). Then 𝑈𝑐

𝑚 is closed and
inf𝑥∈𝐹,𝑦∈𝑈𝑐

𝑚
𝑑 (𝑥, 𝑦) ≥ 1/𝑚. Define 𝑓𝑚 as 𝑓𝑚(𝑥) := 𝑑 (𝑥,𝑈𝑐

𝑚)/(𝑑 (𝑥,𝑈𝑐
𝑚) + 𝑑 (𝑥, 𝐹)).

Then 𝑓𝑚 is bounded and uniformly continuous on 𝑋 with 0 ≤ 𝑓𝑚 ≤ 1, 𝑓𝑚 = 1 on 𝐹 and
𝑓𝑚 = 0 on𝑈𝑐

𝑚. Hence, 1𝐹 ≤ 𝑓𝑚 ≤ 1𝑈𝑚
. Then by (2),

lim sup
𝑛∞̃

𝜇𝑛 (𝐹) ≤ lim sup
𝑛→∞

∫
𝑓𝑚 𝑑𝜇𝑛 =

∫
𝑓𝑚 𝑑𝜇 ≤ 𝜇(𝑈𝑚).

Since 𝐹 is closed,
⋂∞

𝑚=1𝑈𝑚 = 𝐹. Since the sets 𝑈𝑚 are decreasing, then by continuity
from below of measures

𝜇(𝐹) = lim
𝑚→∞

𝜇(𝑈𝑚) ≤ lim sup
𝑛→∞

(𝐹).

(3) and (4) =⇒ (5): Let 𝐴 ∈ B(𝑋) with 𝜇(𝜕𝐴) = 0. Then 𝜇(𝐴o) = 𝜇(𝐴) = 𝜇(𝐴).
Moreover, 𝐴o ⊆ 𝐴 ⊆ 𝐴, 𝐴o is open, and 𝐴 is closed. Hence,

𝜇(𝐴) = 𝜇(𝐴o) ≤ lim inf
𝑛→∞

𝜇𝑛 (𝐴o) ≤ lim inf
𝑛→∞

𝜇𝑛 (𝐴)

≤ lim sup
𝑛→∞

𝜇𝑛 (𝐴) ≤ lim sup
𝑛→∞

(𝐴) ≤ 𝜇(𝐴) = 𝜇(𝐴).

(5) =⇒ (1): Fix 𝑓 ∈ 𝐶𝑏 (𝑋). Decompose the range of 𝑓 so that[
inf
𝑥∈𝑋

𝑓 (𝑥), sup
𝑥∈𝑋

𝑓 (𝑥)
]
⊆

𝑁⋃
𝑖=1

[𝑐𝑖 , 𝑐𝑖+1]

with 𝜇({ 𝑓 = 𝑐𝑖}) and 0 ≤ 𝑐𝑖+1 − 𝑐𝑖 ≤ 𝜀 for all 0 ≤ 𝑖 ≤ 𝑁 . This is always possible since
𝑓 is bounded and the distribution function of 𝑓 , 𝑡 ↦→ 𝜇({ 𝑓 ≤ 𝑡}), has at most countably
many discontinuities. The sets 𝐴𝑖 = {𝑐𝑖 ≤ 𝑓 < 𝑐𝑖+1} are measurable with 𝜇(𝛿𝐴𝑖) = 0.
Define 𝑔 =

∑𝑁
𝑖=1 𝑐𝑖1𝐴𝑖

. Then (5) implies lim𝑛→∞
∫
𝑔 𝑑𝜇𝑛 =

∫
𝑔 𝑑𝜇. By construction,

sup𝑥∈𝑋 |𝑔(𝑥) − 𝑓 (𝑥) | ≤ 𝜀, and thus

lim sup
𝑛→∞

����∫ 𝑓 𝑑𝜇𝑛 −
∫

𝑓 𝑑𝜇

���� ≤ 2𝜀.

Since 𝜀 and 𝑓 are arbitrary, this proves that 𝜇𝑛
𝑤−→ 𝜇. □

Reference. T.3.2. in van Gaans’s notes and T.6.12. in Cerny’s notes.
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Lemma 3 (Tychonoff’s theorem). Let 𝐼 be any set and, for each 𝑖 ∈ 𝐼, let 𝐾𝑖 be a
compact topological space. Then the product

𝐾 :=
∏
𝑖∈𝐼

𝐾𝑖 = {𝑥 = (𝑥𝑖)𝑖∈𝐼 : 𝑥𝑖 ∈ 𝐾𝑖 for all 𝑖 ∈ 𝐼}

is compact with respect to the product topology (that is, the weakest topology on 𝐾 such
that the obvious projection 𝜋𝑖 : 𝐾 → 𝐾𝑖 is continuous for every 𝑖 ∈ 𝐼).

Proof. A family G of subsets of 𝐾 has the finite intersection property if the intersection
of every finite subfamily of G has nonempty intersection. Let F be a family of closed
subsets of 𝐾 that has the finite intersection property. The collection of all families of
closed subsets of 𝐾 that have the finite intersection property and contain F is partially
ordered by inclusion and every chain has an upper bound (the union of all sets in the
chain). By Zorn’s lemma, there is a maximal family F𝑀 in this collection. Denote
𝜋𝑖 : 𝐾 → 𝐾𝑖 the canonical projection onto the 𝑖 component. Then the family of closed
sets {𝜋𝑖 (𝐹)}𝐹∈F𝑀

has also the finite intersection property. Since 𝐾𝑖 is compact, there
is some 𝑥𝑖 ∈

⋂
𝐹∈F𝑀

𝜋𝑖 (𝐹). If 𝐹𝑖 is a closed neighborhood of 𝑥𝑖 , then 𝜋−1
𝑖
(𝐹𝑖) ∈ F𝑀

(since otherwise there would be some 𝐹 ∈ F𝑀 such that 𝐹 ∩ 𝜋−1
𝑖
(𝐹𝑖) = ∅ contradicting

𝜋𝑖 (𝐹) ∩ 𝐹𝑖 ≠ ∅). For every finite subset 𝐼0 ⊆ 𝐼, we have
⋂

𝑖∈𝐼0 𝜋
−1
𝑖
(𝐹𝑖) ∈ F𝑀 . Thus for

every 𝐹 ∈ F𝑀 , we have
⋂

𝑖∈𝐼0 𝜋
−1
𝑖

(𝐹𝑖) ∩𝐹 ≠ ∅, and so every neighborhood of 𝑥 = (𝑥𝑖)𝑖∈𝐼
intersects 𝐹. Since 𝐹 is closed, we have that 𝑥 ∈ 𝐹. Since 𝑥 ∈ 𝐹 for all 𝐹 ∈ F𝑀 ⊇ F , we
have that 𝑥 ∈ 𝐹 for all 𝐹 ∈ F , and so 𝐾 is compact. □

Reference. T.B.18. in Teschl TRFA p.535 or T.A.2.1. in Buhler&Salamon ETHZurich
FA’s notes p.450.

Lemma 4 (Banach–Alaoglu Theorem). Let 𝑋 be a (real) normed vector space and 𝑋∗

its dual topological space (that is, the space of all linear functionals on 𝑉) endowed with
the norm

∥𝑥∗∥ = sup
𝑥∈𝑋:∥𝑥 ∥≤1

|𝑥∗(𝑥) |.

Then the closed unit ball
𝐵∗ := {𝑥∗ ∈ 𝑋∗ : ∥𝑥∗∥ ≤ 1}

in 𝑋∗ is compact with respect to the weak* topology.

Proof. We apply Tychonoff’s theorem with parameter space 𝐼 = 𝑋 . To each 𝑥 ∈ 𝑋 ,
associate the compact interval

𝐾𝑥 := [−∥𝑥∥, ∥𝑥∥] ⊆ R.

The product of these intervals is the space

𝐾 :=
∏
𝑥∈𝑋

𝐾𝑥 = { 𝑓 : 𝑋 → R : | 𝑓 (𝑥) | ≤ ∥𝑥∥ for all 𝑥 ∈ 𝑋} ⊆ R𝑋 .

Define
𝐿 := { 𝑓 : 𝑋 → R : 𝑓 is linear} ⊆ R𝑋,

then
𝐵∗ = 𝐾 ∩ 𝐿.
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By definition, the weak* topology on 𝐵∗ is induced by the product topology on R𝑋. We
now prove that the set 𝐿 is closed in R𝑋 with respect to the product topology. Fix 𝑥, 𝑦 ∈ 𝑋
and 𝜆 ∈ R, and define the maps 𝜙𝑥,𝑦 : R𝑋 → R and 𝜓𝑥,𝜆 : R𝑋 → R by

𝜙𝑥,𝑦 ( 𝑓 ) = 𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦) and 𝜓𝑥,𝜆( 𝑓 ) = 𝑓 (𝜆𝑥) − 𝜆 𝑓 (𝑥).

By definition of the product topology, these maps are continuous, and thus the set

𝐿 =
⋂

𝑥,𝑦∈𝑋
𝜙−1
𝑥,𝑦 (0) ∩

⋂
𝑥∈𝑋,𝜆∈R

𝜓−1
𝑥,𝜆(0)

is closed with respect to the product topology. By Tychonoff’s theorem, 𝐾 is a compact
subset of R𝑋. Moreover, the space R𝑋 is Hausdorff. It follows that 𝐵∗ = 𝐾 ∩ 𝐿 is
compact. □

Reference. T.3.2.4. in Buhler&Salamon ETHZurich FA’s notes p.126 or T.5.10. in Teschl
TRFA p.143.

Lemma 5 (Riesz(–Markov–Kakutani) representation theorem). Let 𝑋 be a compact met-
ric space. The spaces of continuous functions 𝐶 (𝑋) and the space of finite signed Borel
measures M±

𝑓
(𝑋) are isometrically isomorphic.

Proof. See Lecture 13. □

Lemma 6 (𝑋 metrizable and separable implies M1(𝑋) metrizable and separable). Let 𝑋
be be a metrizable and separable topological space. Then the space M1(𝑋) of all Borel
probability measures on 𝑋 endowed with the topology of weak convergence is metrizable
and separable.

Proof. Let 𝑑 be a metric on 𝑋 . Define the Lévy–Prokhorov metric on M1(𝑋) by

𝜌(𝜇, 𝜈) := inf{𝜀 > 0 : 𝜇(𝐴) ≤ 𝜈(𝐴𝜀) + 𝜀 and 𝜈(𝐴) ≤ 𝜇(𝐴𝜀) + 𝜀 for all 𝐴 ∈ B(𝑋)}

where 𝐴𝜀 = {𝑥 ∈ 𝑋 : 𝑑 (𝑥, 𝑦) < 𝜀 for some 𝑦 ∈ 𝐴}.
We first show that 𝜌 is a metric on M1(𝑋). Symmetry follows directly from the

definition. Since (𝐴𝜀)𝜂 ⊆ 𝐴𝜀+𝜂 , the triangular inequality follows immediately. We now
show that 𝜌(𝜇, 𝜈) = 0 implies 𝜇 = 𝜈. Let 𝐴 be a closed subset of 𝑋 . Then 𝐴 =

⋂
𝜀>0 𝐴

𝜀 .
Since 𝜇(𝐴) ≤ 𝜈(𝐴𝜀) + 𝜀 and 𝜈(𝐴) ≤ 𝜇(𝐴𝜀) + 𝜀 for all 𝜀 > 0, then by letting 𝜀 → 0 we
have 𝜇(𝐴) = 𝜈(𝐴). Since this holds for any closed subset 𝐴 of 𝑋 , we have 𝜇 = 𝜈. This
proves that 𝜌 is a metric on M1(𝑋). Note that we can rewrite 𝜌 as

𝜌(𝜇, 𝜈) = inf{𝜀 > 0 : 𝜇(𝐴) ≤ 𝜈(𝐴𝜀) + 𝜀 for all 𝐴 ∈ B(𝑋)}.

Indeed, let 𝜀 > 0 such that 𝜇(𝐴) ≤ 𝜈(𝐴𝜀) + 𝜀. Note that ((𝐴𝜀)𝑐)𝜀 ⊆ 𝐴𝑐. Then

𝜈(𝐴) = 1 − 𝜈(𝐴𝑐) ≤ 1 − 𝜈(((𝐴𝜀)𝑐)𝜀) ≤ 𝜇((𝐴𝜀)𝑐) + 𝜀 = 𝜇(𝐴𝜀) + 𝜀.

We then prove that 𝜌 metrizes weak convergence. Let (𝜇𝑛)𝑛∈N be a sequence in
M1(𝑋) such that 𝜌(𝜇𝑛, 𝜇) → 0 for some 𝜇 ∈ M1(𝑋). Let 𝐴 be a closed set in 𝑋 and
𝜀 > 0. There exists an integer 𝑛0 such that for all 𝑛0 ≥ 𝑛, 𝜇𝑛 (𝐴) ≤ 𝜇(𝐴𝜀) + 𝜀. Hence
lim sup𝑛 𝜇𝑛 (𝐴) ≤ 𝜇(𝐴𝜀) + 𝜀. By letting 𝜀 → 0, we get that lim sup𝑛 𝜇𝑛 (𝐴) ≤ 𝜇(𝐴)
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since 𝐴 =
⋂

𝜀>0 𝐴
𝜀 as a closed subset. By portmanteau, we have 𝜇𝑛

𝑤−→ 𝜇. Conversely,
suppose 𝜇𝑛

𝑤−→ 𝜇 and let (𝑥𝑚)𝑚∈N be a dense sequence in 𝑋 . For all 𝜀 > 0, we have 𝑋 =⋃
𝑚∈N 𝐵𝜀 (𝑥𝑚). Fix 𝜀 > 0 and a finite subset 𝑀 ⊆ N such that 𝜇(⋃𝑚∈𝑀 𝐵𝜀 (𝑥𝑚)) ≥ 1−𝜀.

The setU of all open sets of the form𝑈 = 𝐵𝜀 (𝑥𝑚1)∪· · ·∪𝐵𝜀 (𝑥𝑚𝑟
) for {𝑚1, . . . , 𝑚𝑟 } ⊆ 𝑀

is finite, and so, by portmanteau, for 𝑛 sufficiently large, 𝜇(𝑈) ≥ 𝜇(𝑈) − 𝜀 for all
𝑈 ∈ U . Fix 𝐴 ∈ B(𝑋) and approximate 𝐴 by 𝑈 (𝐴) :=

⋃
𝑚∈𝑀:𝐵𝜀 (𝑥𝑚 )∩𝐴≠∅ 𝐵𝜀 (𝑥𝑚). If

𝑥 ∈ 𝐴 \ 𝑈 (𝐴), then 𝑥 is not in any ball 𝐵𝜀 (𝑥𝑚), 𝑚 ∈ 𝑀 , and so 𝑥 is in a subset of
𝜇-measure less than 𝜀. Therefore,

𝜇(𝐴) ≤ 𝜇(𝑈 (𝐴)) + 𝜇(𝐴 \𝑈 (𝐴)) ≤ 𝜇𝑛 (𝑈 (𝐴)) + 2𝜀.

Since𝑈 (𝐴) ⊆ 𝐴2𝜀 , then
𝜇(𝐴) ≤ 𝜇𝑛 (𝐴2𝜀) + 2𝜀.

Therefore, by asymmetric redefinition of the Lévy–Prokhorov metric, we have 𝜌(𝜇𝑛, 𝜇) ≤
2𝜀. Since 𝜀 > 0 is arbitrary, this proves that 𝑑 (𝜇𝑛, 𝜇) → 0.

We finally show that M1(𝑋) is separable. Let (𝑥𝑚)𝑚∈N be a dense sequence in 𝑋 .
Consider the countable set of probability measures of the form 𝜈 =

∑
𝑚∈𝑀 𝑟𝑚𝛿𝑥𝑚 where

𝑀 ⊆ N is finite and the 𝑟𝑚 are rational numbers such that
∑

𝑚∈𝑀 𝑟𝑚 = 1. We want to
approximate up to 𝜀 > 0 with respect to 𝜌 a measure 𝜇 ∈ M1(𝑋) by a measure 𝜈 of
this form. Fix 𝑀 such that 𝜇(⋃𝑚∈𝑀 𝐵𝜀 (𝑥𝑚)) ≥ 1 − 𝜀. By intersecting appropriately the
balls 𝐵𝜀 (𝑥𝑚), we can find disjoint measurable subsets 𝐵𝑚 such that 𝑥𝑚 ∈ 𝐵𝑚 ⊆ 𝐵𝜀 (𝑥𝑚)
for all 𝑚 ∈ 𝑀 and such that

⋃
𝑚∈𝑀 𝐵𝜀 (𝑥𝑚) =

⊔
𝑚∈𝑀 𝐵𝑚. Take 𝜈 =

∑
𝑚∈𝑀 𝑟𝑚𝛿𝑥𝑚

where the 𝑟𝑚 are chosen so that
∑

𝑚∈𝑀 |𝑟𝑚 − 𝜇(𝐵𝑚) | ≤ 𝜀. Let 𝐴 ∈ B(𝑋) and define
𝑉 (𝐴) = ⊔

𝑚∈𝑀:𝐵𝑚∩𝐴≠∅ 𝐵𝑚. Then

𝜇(𝐴) ≤ 𝜇(𝑉 (𝐴)) + 𝜇(𝐴 \𝑉 (𝐴)) ≤ 𝜇(𝑉 (𝐴)) + 𝜀.

Since 𝑉 (𝐴) ⊆ 𝐴𝜀 and |𝜇(𝑉 (𝐴)) − 𝜈(𝑣(𝐴)) | ≤
∑

𝑚∈𝑀:𝐵𝑚∩𝐴≠∅ |𝜇(𝐵𝑚) − 𝑟𝑚 | ≤ 𝜀, we
have

𝜇(𝐴) ≤ 𝜈(𝑉 (𝐴)) + 2𝜀 ≤ 𝜈(𝐴2𝜀) + 2𝜀.

By definition, this implies that 𝜌(𝜇, 𝜈) ≤ 2𝜀, and so we found a countable dense subset
of M1(𝑋). This concludes the proof. □

Reference. P.1.25. in Méliot.

Lemma 7 (𝑋 compact implies M1(𝑋) compact). Let 𝑋 be a metrizable compact topo-
logical space. Then the space M1(𝑋) of all Borel probability measures on 𝑋 endowed
with the topology of weak convergence is metrizable compact.

Proof. We apply the Banach–Alaoglu theorem to the space𝐶 (𝑋) of continuous function-
als on 𝑋 . By Riesz’s representation theorem, we can identify M±

𝑓
(𝑋) = 𝐶 (𝑋)∗. Then the

Banach–Alaoglu theorem guarantees that the ball 𝐵∗ in M±
𝑓
(𝑋) is compact. Moreover,

M1(𝑋) is a subset of 𝐵∗ since ∥ 𝑓 ∥∞ ≤ 1 and 𝜇 ∈ M1(𝑋) imply |𝜇( 𝑓 ) | ≤ 1. To show
that M1(𝑋) is compact, it thus suffices to show that M1(𝑋) is closed. We have that
M1(𝑋) is the intersection of

{𝜇 ∈ M(𝑋) : 𝜇(1) = 1}
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and
{𝜇 ∈ M(𝑋) : 𝜇( 𝑓 ) ≥ 0 for all 𝑓 ∈ 𝐶 (𝑋) with 𝑓 ≥ 0},

which are closed with respect to the weak* topology as inverse images of closed sets in
R under weak* continuous maps. It follows that M1(𝑋) is closed and hence compact.
Since 𝑋 is metrizable compact, it is separable. By Lemma 6, it follows that M1(𝑋) is
also metrizable (and separable), and hence metrizable compact. □

Reference. P.1.26. in Méliot.

Lemma 8 (Separable Metric space embedded in Hilbert cube (part of Urysohn metrization
theorem)). Let 𝑋 be a separable metric space. Then there exists a compact metric space
𝑌 and a map 𝑇 : 𝑋 → 𝑌 such that 𝑇 is a homeomorphism from 𝑋 onto 𝑇 (𝑌 ).

Proof. Let 𝑌 := [0, 1]N = {(𝜉𝑖)𝑖∈N : 𝜉𝑖 ∈ [0, 1] for all 𝑖 ∈ N}. Since [0, 1] is compact,
𝑌 is compact for the product topology by Tychonoff’s theorem, and it is metrized by
𝑑 (𝜉, 𝜂) =

∑∞
𝑖=1 2−𝑖 |𝜉𝑖 − 𝜂𝑖 | for all 𝜉, 𝜂 ∈ 𝑌 . Let (𝑥𝑖)𝑖∈N be a dense sequence in 𝑋 and

define 𝛼𝑖 (𝑥) := min{𝑑 (𝑥, 𝑥𝑖), 1} for all 𝑥 ∈ 𝑋 and all 𝑖 ∈ N. Then define the map
𝑇 : 𝑋 → 𝑌 by

𝑇 (𝑥) := (𝛼𝑖)𝑖∈N = (min{𝑑 (𝑥, 𝑥𝑖), 1})𝑖∈N.

The map 𝑇 is 1-Lipschitz since

𝑑 (𝑇 (𝑥), 𝑇 (𝑦)) =
∞∑︁
𝑖=1

2−𝑖 | min{𝑑 (𝑥, 𝑥𝑖), 1} − min{𝑑 (𝑦, 𝑥𝑖), 1}|

≤
∞∑︁
𝑖=1

2−𝑖 |𝑑 (𝑥, 𝑥𝑖) − 𝑑 (𝑦, 𝑥𝑖) | ≤
∞∑︁
𝑖=1

2−𝑖𝑑 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑦).

In particular, the map 𝑇 is continuous. We now show that for any 𝐶 ⊆ 𝑋 closed and
𝑥 ∉ 𝐶, there is 𝜀 > 0 and 𝑖 such that 𝛼𝑖 (𝑥) ≤ 𝜀/3 and 𝛼𝑖 (𝑦) ≥ 2𝜀/3 for all 𝑦 ∈ 𝐶. Take
𝜀 := min{𝑑 (𝑥, 𝐶), 1} ∈ (0, 1] and 𝑖 such that 𝑑 (𝑥, 𝑥𝑖) ≤ 𝜀/3. Then 𝛼𝑖 (𝑥) ≤ 𝜀/3 and for
any 𝑦 ∈ 𝐶,

𝛼𝑖 (𝑦) = min{𝑑 (𝑦, 𝑥𝑖), 1} ≥ min{(𝑑 (𝑦, 𝑥) − 𝑑 (𝑥, 𝑥𝑖), 1)}
≥ min{𝑑 (𝑥, 𝐶) − 𝜀/3, 1} ≥ min{2𝜀/3, 1} = 2𝜀/3.

In particular, if 𝑥 ≠ 𝑦, then by regularity of 𝑋 and the previous claim, there exists 𝑖 such
that 𝛼𝑖 (𝑥) ≠ 𝛼𝑖 (𝑦). This proves that𝑇 is injective, and so bĳective on its image𝑇 (𝑋). We
finally show that for any (𝑦𝑛)𝑛∈N and 𝑦 in 𝑋 , we have 𝑦𝑛 → 𝑦 if and only if𝑇 (𝑦𝑛) → 𝑇 (𝑦).
If 𝑦𝑛 → 𝑦, then 𝛼𝑖 (𝑦𝑛) → 𝛼𝑖 (𝑦) for all 𝑖 ∈ N by continuity, and so 𝑑 (𝑇 (𝑦𝑛), 𝑇 (𝑦)) → 0
as 𝑛 → ∞ (by the Moore–Osgood theorem for iterated limits). Conversely, suppose that
𝑦𝑛 ̸→ 𝑦. Then there is a subsequence such that 𝑦 ∉ {𝑦𝑛1 , 𝑦𝑛2 , . . . }. Then by the claim
there is 𝑖 such that 𝛼𝑖 (𝑦) ≤ 𝜀/3 and 𝛼𝑖 (𝑦𝑛𝑘 ) ≥ 2𝜀/3 for all 𝑘 , so that 𝛼𝑖 (𝑦𝑛𝑘 ) ̸→ 𝛼𝑖 (𝑦) as
𝑘 → ∞, and hence 𝑇 (𝑦𝑛𝑘 ) ̸→ 𝑇 (𝑦). This concludes the proof. □

Reference. L.5.4. in van Gaans’s notes p.16.

Addendum. Definitions and use of Prokhorov’s theorem.

Definition 9 (Tight (Family of) Measures). A collection 𝑀 ⊆ M 𝑓 (𝐸) of finite measures
on (𝐸,B(𝐸)) is said to be tight if for all 𝜀 > 0, there exists a compact set 𝐾 ⊆ 𝐸 such
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that
sup{𝜇(𝐸 \ 𝐾) : 𝜇 ∈ 𝑀} < 𝜀.

Remark. Prokhorov’s theorem is of fundamental importance in probability theory as it
can be used to: first, (a) determine weak convergence of a tight sequence since it suffices
then to prove that any convergent subsequence has the same limit (see L.1.20. in Méliot’s
notes where 1. is verified due to sequential compactness); and then (b) to construct a
measure with given properties as limit of a tight sequence of measures whose convergent
subsequences have same limit.

Lemma 10 (L.1.20. in Méliot). Let 𝑋 be a metric space and (𝑥𝑛)𝑛∈N a sequence in 𝑋 .
Suppose (𝑥𝑛)𝑛∈N satisfies the two properties:

1. every sub-sequence of (𝑥𝑛)𝑛∈N has a convergent sub-subsequence;
2. if (𝑥𝑛𝑘 )𝑘∈N is a convergent sub-sequence of (𝑥𝑛)𝑛∈N, then its limit is 𝑥.

Then (𝑥𝑛)𝑛∈N is a convergent sequence and its limit is 𝑥.

Proof. Suppose 𝑥𝑛 ̸→ 𝑥. Then there exist 𝜀 > 0 and a sub-sequence (𝑥𝑛𝑘 )𝑘∈N such that
for all 𝑘 ∈ N, 𝑑 (𝑥𝑛𝑘 , 𝑥) ≥ 𝜀. By assumption, there exists a convergent sub-sub-sequence
(𝑥𝑛𝑘𝑙 )𝑙∈𝐵𝑁 of (𝑥𝑛𝑘 )𝑘∈N whose limit we denote 𝑦. Then 𝑑 (𝑦, 𝑥) ≥ 𝜀. This contradicts the
fact that every convergent sub-sequence of (𝑥𝑛)𝑛∈N has limit 𝑥. □
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