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To prove Lévy’s continuity theorem, we use Prokhorov’s theorem and a lemma for
the application of Prokhorov’s theorem, which were both proved in Lecture 16.

Theorem 1 (Lévy’s Continuity Theorem). Let `, `1, `2, . . . be Borel probability mea-
sures on R𝑑 . Denote the characteristic function of `𝑖 by ˆ̀𝑖 (b) =

∫
𝑒𝑖⟨ b ,𝑥⟩ 𝑑`(𝑥) for all

b ∈ R𝑑 .
1. If `𝑛 ⇝ `, then lim𝑛→∞ ˆ̀𝑛 (b) = ˆ̀(b) for all b ∈ R𝑑 .
2. If there is a function 𝜑 partially continuous at 0 (that is, continuous at 0 along

each coordinate axis) such that lim𝑛→∞ ˆ̀𝑛 (b) = 𝜑(b) for all b ∈ R𝑑 , then 𝜑 is the
characteristic function of some Borel probability measure `′ on R𝑑 and `𝑛 ⇝ `′.

Remark. Since any characteristic function is continuous at 0 (and hence partially contin-
uous at 0), we directly have the equivalence: `𝑛 ⇝ ` if and only if lim𝑛→∞ ˆ̀𝑛 (b) = ˆ̀(b)
for all b ∈ R𝑑 .

Remark. The standard proof of the indirect implication in Lévy’s continuity theorem,
which is the difficult part of the theorem, is a direct application of Prokhorov’s theorem:
(i) an integral inequality is derived to prove that the assumption in (2.) implies tightness
of (`𝑛)𝑛∈N; (ii) Prokhorov’s theorem is invoked from tightness to show that every subse-
quence of (`𝑛)𝑛∈N has a convergent sub-subsequence; (iii) then the direct implication of
Lévy’s continuity theorem and the uniqueness theorem is used to get the uniqueness of
the limit in case of convergence of the subsequence; (iv) Lemma 3 is invoked.

Remark. The proof of Lévy’s continuity theorem may seem involved due to the invocation
of Prokhorov’s theorem (which we proved using the Riesz representation theorem), but
this is an artifact of the fact that we proved Prokhorov’s theorem in a much more general
case than R𝑑 . In practice, it suffices to prove Helly’s selection theorem. Simpler proofs
that do not even call for this result have been worked out.

Proof. 1. Since 𝑥 ↦→ 𝑒𝑖⟨ b ,𝑥⟩ is a bounded and continuous function for any b ∈ R𝑑 , we
have by definition of weak convergence that lim𝑛→∞ ˆ̀𝑛 (b) = ˆ̀(b) for all b ∈ R𝑑 .

2. Consider the coordinate axis lines b = (0, . . . , 0, b 𝑗 , 0, . . . , 0) for 𝑗 = 1, . . . , 𝑑.
Since ˆ̀𝑛 is continuous at 0 with ˆ̀𝑛 (0) = 1, for a given Y > 0, we can take 𝛿 < 0
small enough so that | ˆ̀𝑛 (b) − 1| < Y/7𝑑 for |b | ≤ 𝛿 and b on the axes. By Lemma 4,
`𝑛 ( |𝑥 𝑗 | ≥ 1/𝛿) ≤ 7

𝛿

∫ 𝛿

0 1 − Re( ˆ̀𝑛, 𝑗 (b 𝑗)) 𝑑b 𝑗 for all 𝑛 ∈ N and all 𝑗 where `𝑛, 𝑗 is the
distribution of the 𝑗 th one-dimensional projection under `𝑛. Then by (DOM) we have
that 7

𝛿

∫ 𝛿

0 1 − Re( ˆ̀𝑛, 𝑗 (b 𝑗)) 𝑑b 𝑗 < Y/𝑑 for all 𝑛 ≥ 𝑛0 for some large enough 𝑛0 ∈ N
and all 𝑗 . Thus `𝑛 ( |b 𝑗 | ≥ 1/𝛿) < Y/𝑑 for all 𝑛 ≥ 𝑛0 and all 𝑗 . For 𝑛 < 𝑛0, by
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countable additivity there is some 𝑀𝑛 < ∞ such that P( |b 𝑗 | ≥ 𝑀𝑛) < Y/𝑑 for all 𝑗 .
Define 𝑀 := max(1/𝛿,max{𝑀 𝑗 : 0 ≤ 𝑗 < 𝑛0}). Then `𝑛 ( |b 𝑗 | ≥ 𝑀) < Y/𝑑 for all
𝑛 ∈ N and all 𝑗 = 1, . . . , 𝑑. If 𝐶 is the cube {b ∈ R𝑑 : |b 𝑗 | ≤ 𝑀 for 𝑗 = 1, . . . , 𝑑},
then `𝑛 (𝐶) > 1 − Y for all 𝑛 ∈ N. This proves that (`𝑛)𝑛∈N is tight. By Prokhorov’s
theorem, every subsequence of (`𝑛)𝑛∈N has a weakly convergent sub-subsequence. If a
subsequence of (`𝑛)𝑛∈N weakly converges to some limit `′, then (1.) in Lévy’s continuity
theorem and the uniqueness theorem imply that `′ is unique. By Lemma 3, we conclude
that `𝑛 ⇝ `′. □

Reference. T.9.8.2. in Dudley RAP p.326 or T.6.11. in Bhattacharya&Waymire BCPT
p.117-118 or T.15.24. in Klenke PT p.345.

Lemma 2 (Prokhorov’s Theorem). Let (𝑋, 𝑑) be a metric space, M1(𝑋) the space of
all Borel probability measures endowed with the topology of weak convergence, and N a
subset of M1(𝑋).

1. If N is tight, then N is relatively sequentially compact.
2. If (𝑋, 𝑑) is Polish and N is relatively sequentially compact, then N is tight.

Proof. See Lecture 16. □

Lemma 3. Let 𝑋 be a metric space and (𝑥𝑛)𝑛∈N a sequence in 𝑋 . Suppose (𝑥𝑛)𝑛∈N
satisfies the two properties:

1. every sub-sequence of (𝑥𝑛)𝑛∈N has a convergent sub-subsequence;
2. if (𝑥𝑛𝑘 )𝑘∈N is a convergent sub-sequence of (𝑥𝑛)𝑛∈N, then its limit is 𝑥.

Then (𝑥𝑛)𝑛∈N is a convergent sequence and its limit is 𝑥.

Proof. See Lecture 16. □

Lemma 4. Let ` be a Borel probability measure on R. Then for any 𝑎 ∈ (0, +∞),

`

(
|𝑥 | ≥ 1

𝑎

)
≤ 7

𝑎

∫ 𝑎

0
1 − Re( ˆ̀(b)) 𝑑b.

Proof. We first prove that for any 𝑡 with |𝑡 | ≥ 1, we have (sin 𝑡)/𝑡 ≤ sin 1. Since
𝑡 ↦→ (sin 𝑡)/𝑡 is an even function, we may assume without loss of generality that 𝑡 ≥ 0.
Since sin 1 > 0.8, the claim holds for 𝑡 > 1.3. For 1 ≤ 𝑡 ≤ 1.3, 𝑡 ↦→ (sin 𝑡)/𝑡 is decreasing,
hence the preliminary result. We now prove the main result. By the Tonelli–Fubini, we
have

1
𝑎

∫ 𝑎

0

∫
R

1 − cos(b𝑥)𝑑`(𝑥)𝑑b =

∫
R

1 − sin(𝑎𝑥)
𝑎𝑥

𝑑`(𝑥).

Then by the preliminary claim, we get∫
R

1 − sin(𝑎𝑥)
𝑎𝑥

𝑑`(𝑥) ≥ (1 − sin 1)`
(
|𝑥 | ≥ 1

𝑎

)
.

Since sin 1 < 6/7, this yields the result. □

Reference. T.9.8.1. in Dudley RAP p.325. (Similar inequalities e.g. in T.3.3.17. in
Durrett PTE p.132 or T.6.11. in Bhattacharya&Edward BCPT p.118.)

Lemma 5. The characteristic function of the Gaussian distribution a = 𝑁 (𝑚, 𝜎2) is given
for all b ∈ R by

â(b) = 𝑒𝑖 b𝑚𝑒−𝜎2 b 2/2.
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Proof. We have by definition â(b) =
∫
R

1
𝜎
√

2𝜋
𝑒−(𝑥−𝑚)2/(2𝜎2 )𝑒𝑖𝑥 b 𝑑𝑥. We derive the

result for 𝑚 = 0 and 𝜎 = 1 and use the facts that â𝜎𝑋+𝑚(b) = 𝑒𝑖 b𝑚â𝑋 (𝜎b) and
that if 𝑋 ∼ 𝑁 (0, 1), then 𝜎𝑋 + 𝑚 ∼ 𝑁 (𝑚, 𝜎2). By parity, the imaginary part of
â is equal to zero. It remains to compute 𝑓 (b) =

∫
R

1√
2𝜋

𝑒−𝑥
2/2 cos(𝑥b) 𝑑𝑥. Since

|𝑥 sin(𝑥b)𝑒−𝑥2/2 | ≤ |𝑥 |𝑒−𝑥2/2 which is integrable, we can differentiate under the integral
sign so that 𝑓 ′(b) =

∫
R

1√
2𝜋

𝑥𝑒−𝑥
2/2 sin(𝑥b) 𝑑𝑥. By integration by parts, we find that

𝑓 ′(b) =
∫
R

1√
2𝜋

𝑒−𝑥
2/2b cos(𝑥b) 𝑑𝑥 = −b 𝑓 (b). The function 𝑓 is thus solution to the

differential equation 𝑓 ′(b) = −b 𝑓 (b) with initial condition 𝑓 (0) = 1. It follows that
𝑓 (b) = 𝑒−b 2/2, which concludes the proof. □

Reference. L.8.2.3. in Le Gall’s notes p.104.

Lemma 6 (Uniqueness Theorem). If ` and a are Borel probability measures on R𝑑 with
same characteristic function, then ` = a.

Proof. Let ` be a Borel probability measure onR𝑑 . We equivalently show that the Fourier
transform defined on Borel probability measures on R𝑑 is injective, that is, ` ↦→ ˆ̀ is
injective. Suppose first that 𝑑 = 1. For any 𝜎 > 0, denote 𝑔𝜎 the density of the
distribution a𝜎 = 𝑁 (0, 𝜎2). Consider the convolution of measures `𝜎 = ` ∗ a𝜎 , that
is, for any 𝐴 ∈ B(R), `𝜎 (𝐴) =

∫
R2 1𝐴(𝑥 + 𝑦) 𝑑`(𝑥) 𝑑a𝜎 (𝑦) =

∫
𝐴
𝑑𝑡

∫
R
𝑔𝜎 (𝑥 − 𝑡) 𝑑`(𝑥).

The injectivity of the Fourier transform follows from two points: 1. if we know ˆ̀,
we can compute `𝜎 for all 𝜎 > 0; 2. if we know (`𝜎)𝜎>0, we can compute `. For
the first part, note from last lemma that 𝑒−(𝑥−𝑡 )2/2𝜎2

= â1/𝜎 (𝑥 − 𝑡). Thus `𝜎 (𝐴) =∫
𝐴
𝑑𝑡

∫
R2

1
𝜎
√

2𝜋
𝑒𝑖𝑦 (𝑥−𝑡 ) 𝑑a1/𝜎 (𝑦) 𝑑`(𝑥) =

∫
𝐴
𝑑𝑡

∫
R

1
𝜎
√

2𝜋
𝑒−𝑖𝑦𝑡 ) ˆ̀(𝑦) 𝑑a1/𝜎 (𝑦), which is

completely determined by ˆ̀. For the second part, we show that `𝜎 ⇝ ` as 𝜎 → 0. Let ℎ
be a bounded and uniformly continuous function on R. Let Y > 0. We can find 𝛿 > 0 such
that if |𝑥−𝑦 | < 𝛿 then | 𝑓 (𝑥)− 𝑓 (𝑦) | < Y. We have

∫
ℎ 𝑑`𝜎 = E (ℎ(𝑋+𝑌𝜎)) where 𝑋 ∼ `,

𝑌 ∼ a𝜎 , and 𝑋 and𝑌 independent. We have that P( |𝑌𝜎 | ≥ [) = 2
∫ ∞
[

1
𝜎
√

2𝜋
𝑒−𝑦

2/2𝜎2
𝑑𝑦 =

2
2𝜋

∫ ∞
[/𝜎 𝑒−𝑦

2/2 𝑑𝑦 = 𝜑([/𝜎) is a decreasing function in [/𝜎 with lim𝜎→0 𝜑([/𝜎) = 0.
Moreover, we have that |

∫
ℎ 𝑑`𝜎 −

∫
ℎ 𝑑` | = |E (ℎ(𝑋 +𝑌𝜎) − ℎ(𝑋)) | ≤ E ( | 𝑓 (𝑋 +𝑌𝜎) −

𝑓 (𝑋) | | 1 |𝑌𝜎 | ≤[)+2𝐵P( |𝑌𝜎 | ≥ [) ≤ Y+2𝐵𝜑([/𝜎) where 𝐵 is a bound for |ℎ| onR. Then
for𝜎 sufficiently small, we have |

∫
ℎ 𝑑`𝜎−

∫
ℎ 𝑑` | ≤ Y. Thus lim𝜎→0

∫
ℎ 𝑑`𝜎 =

∫
ℎ 𝑑`

for any function ℎ bounded and uniformly continuous, hence `𝜎 ⇝ ` as 𝜎 → 0 by
Portmanteau. This concludes the proof for 𝑑 = 1. For 𝑑 > 1, the proof follows similarly
by considering the functions 𝑔 (𝑑)

𝜎 (𝑥1, . . . , 𝑥𝑑) =
∏𝑑

𝑖=1 𝑔𝜎 (𝑥𝑖) and by noting that for any
b ∈ R𝑑 ,

∫
R𝑑

𝑔
(𝑑)
𝜎 (𝑥)𝑒𝑖⟨ b ,𝑥⟩ 𝑑𝑥 =

∏𝑑
𝑖=1

∫
𝑔𝜎 (𝑥𝑖)𝑒𝑖 b𝑖 𝑥𝑖 𝑑𝑥𝑖 = (2𝜋𝜎2)𝑑/2𝑔 (𝑑)

1/𝜎 (b). □

Reference. T.8.2.4. in Le Gall’s notes p.104. or P.2.6. in Méliot’s notes p.34 or T.9.5.1.
in Dudley RAP p.303 or T.6.9. in Bhattacharya&Waymire BCPT p.116.

Addendum. Some important results of measure theory and Lebesgue integra-
tion.

Lemma 7 (Convergence Theorems for Lebesgue Integration). Let (𝑋,A, `) be a measure
space.

1. (Monotone Convergence) If ( 𝑓𝑛)𝑛∈N is a sequence of measurable functions from
𝑋 to [0, +∞] such that 𝑓𝑛 ≤ 𝑓𝑛+1 for all 𝑛 ∈ N, then

lim
𝑛→∞

∫
𝑋

𝑓𝑛 𝑑` =

∫
𝑋

lim
𝑛→∞

𝑓𝑛 𝑑`.
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2. (Fatou) If ( 𝑓𝑛)𝑛∈N is a sequence of measurable functions from 𝑋 to [0, +∞], then∫
𝑋

lim inf
𝑛→∞

𝑓𝑛 𝑑` ≤ lim inf
𝑛→∞

∫
𝑋

𝑓𝑛 𝑑`.

3. (Dominated Convergence) If ( 𝑓𝑛)𝑛∈N is a sequence of measurable functions from
𝑋 to [−∞, +∞] such that lim𝑛→∞ 𝑓𝑛 = 𝑓 where 𝑓 : 𝑋 → [−∞, +∞] is measurable and if
there exists an integrable function 𝑔 : 𝑋 → [0, +∞] such that | 𝑓𝑛 | ≤ 𝑔 for all 𝑛 ∈ N, then
𝑓 and 𝑓1, 𝑓2, . . . are integrable and

lim
𝑛→∞

∫
𝑋

| 𝑓𝑛 − 𝑓 | 𝑑` = 0,

and, in particular,

lim
𝑛→∞

∫
𝑋

𝑓𝑛 𝑑` =

∫
𝑋

𝑓 𝑑`.

Proof. 1. (MON) Write 𝑓 := lim𝑛→∞ 𝑓𝑛 = sup𝑛 𝑓𝑛, then 𝑓 : 𝑋 → [0, +∞] is measurable.
Since the 𝑓𝑛 are non-decreasing to 𝑓 , we have from monotonicity of the integral that∫

𝑓𝑛 𝑑` is non-decreasing and bounded above by
∫

𝑓 𝑑`, hence lim𝑛→∞
∫
𝑋
𝑓𝑛 𝑑` ≤∫

𝑋
𝑓 𝑑`. We now show that

∫
𝑋
𝑓 𝑑` ≤ lim𝑛→∞

∫
𝑋
𝑓𝑛 𝑑`. By definition, it suffices to

show that
∫
𝑋
𝑔 𝑑` ≤ lim𝑛→∞

∫
𝑋
𝑓𝑛 𝑑` where 𝑔 is a simple function such that 0 ≤ 𝑔 ≤ 𝑓 .

Without loss of generality (by vertical truncation if needed), we may assume 𝑔 finite
everywhere so that there exist reals 0 ≤ 𝑐𝑖 < +∞ and disjoint measurable sets 𝐴1, . . . , 𝐴𝑘

such that 𝑔 =
∑𝑘

𝑖=1 𝑐𝑖1𝐴𝑖
, and hence

∫
𝑋
𝑔 𝑑` =

∑𝑘
𝑖=1 𝑐𝑖`(𝐴𝑖). Let 0 < Y < 1. Then

we have 𝑓 (𝑥) = sup𝑛 𝑓𝑛 (𝑥) > (1 − Y)𝑐𝑖 for all 𝑥 ∈ 𝐴𝑖 . Define 𝐴𝑖,𝑛 := {𝑥 ∈ 𝐴𝑖 :
𝑓𝑛 (𝑥) > (1 − Y)𝑐𝑖}. Then the 𝐴𝑖,𝑛 increase to 𝐴𝑖 and are measurable. By upwards
monotonicity of measures, we get lim𝑛→∞ `(𝐴𝑖,𝑛) = `(𝐴𝑖). Moreover, observe that
𝑓𝑛 ≥

∑𝑘
𝑖=1(1 − Y)𝑐𝑖1𝐴𝑖,𝑛

for any 𝑛 ∈ N. By monotonicity of the integral, we obtain∫
𝑓𝑛 𝑑` ≥ (1−Y)

∑
𝑖 = 1𝑘𝑐𝑖`(𝐴𝑖,𝑛). Taking limits as 𝑛 → ∞, we get lim𝑛→∞

∫
𝑓𝑛 𝑑` ≥

(1 − Y)
∑𝑘

𝑖=1 𝑐𝑖`(𝐴𝑖). Taking Y → 0, we conclude that
∫
𝑋
𝑔 𝑑` ≤ lim𝑛→∞

∫
𝑋
𝑓𝑛 𝑑`.

2. (Fatou) We have lim inf 𝑓𝑛 = lim𝑘→∞(inf𝑛≥𝑘 𝑓𝑛), hence by (MON)∫
lim inf 𝑓𝑛 𝑑` = lim𝑘→∞

∫
inf𝑛≥𝑘 𝑓𝑛 𝑑`. Moreover, for all 𝑝 ≥ 𝑘 , we have inf𝑛≥𝑘 𝑓𝑛 ≤

𝑓𝑝, so that by monotonicity
∫

inf𝑛≥𝑘 𝑓𝑛 𝑑` ≤ inf 𝑝≥𝑘
∫

𝑓𝑝 𝑑`. By taking limits when
𝑘 → ∞, we get lim𝑘→∞

∫
inf𝑛≥𝑘 𝑓𝑛 𝑑` ≤ lim𝑘→∞ inf 𝑝≥𝑘

∫
𝑓𝑝 𝑑` = lim inf

∫
𝑓𝑛 𝑑`, and

this concludes the proof.
3. Since | 𝑓𝑛 | < 𝑔 and | 𝑓 | < 𝑔 and

∫
𝑔 𝑑` < ∞, then the 𝑓𝑛 and 𝑓 are integrable.

Moreover, since | 𝑓 − 𝑓𝑛 | ≤ 2𝑔 and | 𝑓 − 𝑓𝑛 | → 0, we can use Fatou’s lemma to get
lim inf

∫
(2𝑔 − | 𝑓 − 𝑓𝑛 |)𝑑` ≥

∫
lim inf(2𝑔 − | 𝑓 − 𝑓𝑛 |)𝑑` = 2

∫
𝑔 𝑑`. By linearity of the

integral, we have 2
∫
𝑔 𝑑`− lim sup

∫
| 𝑓 − 𝑓𝑛 |𝑑` ≥ 2

∫
𝑔 𝑑`. Thus lim sup

∫
| 𝑓 − 𝑓𝑛 |𝑑` =

0, and so
∫
| 𝑓 − 𝑓𝑛 |𝑑` → 0. Since |

∫
𝑓 𝑑` −

∫
𝑓𝑛 𝑑` | ≤

∫
| 𝑓 − 𝑓𝑛 |𝑑`, we get that∫

𝑓𝑛 𝑑` →
∫

𝑓 𝑑`. This concludes the proof. □

Reference. For (MON) see T.1.4.44. in Tao MT p.107 or T.2.1.1. in Le Gall’s notes
p.19. For (Fatou) see T.2.1.5. in Le Gall’s notes p.22 or C.1.4.47. in Tao MT p.110. For
(DOM) see T.2.2.1. in Le Gall’s notes p.25 or T.1.4.49. in Tao MT p.111.

Lemma 8 (Dynkin’s 𝜋−_Theorem). Let 𝑋 be a nonempty set and C ⊆ L ⊆ 2𝑋 nonempty
collections of sets. Suppose that C is a 𝜋-system, that is, 𝐴, 𝐵 ∈ C implies 𝐴 ∩ 𝐵 ∈ C.
Suppose that L is a _-system, that is, 𝑋 ∈ L, 𝐴, 𝐵 ∈ L and 𝐴 ⊆ 𝐵 imply 𝐵 \ 𝐴 ∈ L, and
𝐴𝑛 ∈ L and 𝐴𝑛 ⊆ 𝐴𝑛+1 for all 𝑛 ∈ N imply

⋃∞
𝑛=1 𝐴𝑛 ∈ L. Then 𝜎(C) ⊆ L.
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Proof. Let L0 be the intersection of all _-systems containing C. It is a _-system that
contains C and that is contained in every _-system that contains C, hence C ⊆ L0 ⊆ L. If
we can show that L0 is also a 𝜋-system, then it will follow that L0 is a 𝜎-algebra. Indeed,
a _-system that is also a 𝜋-system is a 𝜎-algebra: by taking complements, a _-system is
closed under finite unions, and by taking an increasing limit for sets 𝐴𝑛 = 𝐵1 ∪ · · · ∪ 𝐵𝑛,
closed under countable unions. If we prove that L0 ⊇ C is a 𝜎-algebra, then from the
minimality of 𝜎(C) we will have that C ⊆ 𝜎(C) ⊆ L0 ⊆ L, hence completing the proof.
We thus have to prove that L0 is a 𝜋-system.

Let 𝐴 ∈ C. Define L1 = {𝐵 ∈ L0 : 𝐴 ∩ 𝐵 ∈ L0}. Since C is closed under finite
intersections, we have C ⊆ L1. We now show that L1 is a _-system: 𝑋 ∈ L1 by definition;
if 𝐵, 𝐵′ ∈ L1 and 𝐵 ⊆ 𝐵′, then 𝐴∩ (𝐵′ \𝐵) = (𝐴∩𝐵′) \ (𝐴∩𝐵) ∈ L0, hence 𝐵′ \𝐵 ∈ L1;
if 𝐵𝑛 ∈ L1 for all 𝑛 and (𝐵𝑛)𝑛∈N is increasing, then 𝐴 ∩ (⋃𝑛 𝐵𝑛) =

⋃
𝑛 (𝐴 ∩ 𝐵𝑛) ∈ L0,

hence
⋃

𝑛 𝐵𝑛 ∈ L1. Since L1 is a _-system that contains C, then L0 ⊆ L1 by minimality
of L0. Therefore, for all 𝐴 ∈ C and all 𝐵 ∈ L0, we have 𝐴 ∩ 𝐵 ∈ L0.

The same argument can be applied again, but this time to any fixed 𝐵 ∈ L0 and
L2 = {𝐴 ∈ L0 : 𝐴 ∩ 𝐵 ∈ L0}. The same arguments using the last claim in last paragraph
shows that L2 is a _-system that contains C, and hence that L0 ⊆ L2 by minimality of L0.
This proves that for all 𝐴 ∈ L0 and all 𝐵 ∈ L0, we have 𝐴 ∩ 𝐵 ∈ L0, which concludes the
proof. □

Reference. T.3.2. in Billingsley PM p.42 or T.1.4.1. in Le Gall’s notes p.15.

Lemma 9. Let ` and a be two measures on a measurable space (𝑋,A). Suppose that
there exists a 𝜋-system C ⊆ 2𝑋 such that A = 𝜎(C) and `(𝐶) = a(𝐶) for all 𝐶 ∈ C.

1. If `(𝑋) = a(𝑋) < ∞, then ` = a.
2. If there exists a sequence of sets (𝑋𝑛)𝑛∈N such that for all 𝑛 ∈ N, 𝑋𝑛 ∈ C,

𝑋𝑛 ⊆ 𝑋𝑛+1,
⋃∞

𝑛=1 𝑋𝑛 = 𝑋 , and `(𝑋𝑛) = a(𝑋𝑛) < ∞, then ` = a.

Proof. 1. Define L := {𝐴 ∈ A : `(𝐴) = a(𝐴)}. Then C ⊆ L. We show that L is a
_-system: 𝑋 ∈ L by hypothesis; if 𝐴, 𝐵 ∈ L and 𝐴 ⊆ 𝐵, then `(𝐵 \ 𝐴) = `(𝐵) − `(𝐴) =
a(𝐵) − a(𝐴) = a(𝐵 \ 𝐴), hence 𝐵 \ 𝐴 ∈ L; if 𝐴𝑛 ∈ L for all 𝑛 and (𝐴𝑛)𝑛∈N is increasing,
then `(⋃𝑛 𝐴𝑛) = sup𝑛 `(𝐴𝑛) = sup𝑛 a(𝐴𝑛) = a(⋃𝑛 𝐴𝑛), hence

⋃
𝑛 𝐴𝑛 ∈ L. It follows

that A = 𝜎(C) ⊆ L by Dynkin’s 𝜋 − _ theorem. Thus L = A, and so ` = a.
2. Define for all 𝑛 ∈ N the restriction of ` and a to 𝑋𝑛 by `𝑛 and a𝑛, that is, for all

𝐴 ∈ A, `𝑛 (𝐴) := `(𝐴 ∩ 𝑋𝑛) and a𝑛 (𝐴) := a𝑛 (𝐴 ∩ 𝑋𝑛). Then apply (1.) to `𝑛 and a𝑛,
so that `𝑛 = a𝑛. By taking an increasing limit for the sets 𝐴 ∩ 𝑋𝑛, we have for all 𝐴 ∈ A
that `(𝐴) = sup𝑛 `(𝐴 ∩ 𝑋𝑛) = sup𝑛 a(𝐴 ∩ 𝑋𝑛) = a(𝐴), and so ` = a. □

Reference. C.1.4.2. in Le Gall’s notes p.16 or T.3.3. in Billingsley PM p.42.

Lemma 10 (Existence of Product Measure). Let ` and a be 𝜎-finite measures
on the measurable spaces (𝑋,A) and (𝑌,B), respectively. Define A ⊗ B :=
𝜎 ({𝐴 × 𝐵 : 𝐴 ∈ A, 𝐵 ∈ B}). Then there exists a unique 𝜎-finite measure 𝑚 on the
product space (𝑋 × 𝑌,A ⊗ B) such that for all 𝐴 ∈ A and all 𝐵 ∈ B,

𝑚(𝐴 × 𝐵) = `(𝐴) × a(𝐵).

The measure 𝑚 is alternatively denoted ` × a.
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Proof. (Uniqueness.) Define 𝐶𝑛 := 𝐴𝑛 × 𝐵𝑛 where 𝐴𝑛 ∈ A and 𝐵𝑛 ∈ B are increasing
sequences with `(𝐴𝑛) < ∞, a(𝐵𝑛) < ∞,

⋃
𝑛 𝐴𝑛 = 𝑋 , and

⋃
𝑛 𝐵𝑛 = 𝑌 . Then the

𝐶𝑛 form an increasing sequence of sets such that
⋃

𝑛 𝐶𝑛 = 𝑋 × 𝑌 . Let 𝑚 and 𝑚′ be
two measures satisfying the property of the product measure. Then for all 𝑛 ∈ N,
𝑚(𝐶𝑛) = `(𝐴𝑛)×a(𝐵𝑛) = 𝑚′(𝐶𝑛) < ∞. Moreover, 𝑚 and 𝑚′ coincide for all measurable
rectangles which form a 𝜋-system generating A ⊗ B. By Dynkin’s 𝜋 − _ theorem, we
have 𝑚 = 𝑚′.

(Existence.) Define tentatively for all 𝐶 ∈ A ⊗ B, 𝑚(𝐶) =
∫
𝑋
a(𝐶𝑥) 𝑑`(𝑥) where

𝐶𝑥 = {𝑦 ∈ 𝑌 : (𝑥, 𝑦) ∈ 𝐶} for any 𝑥 ∈ 𝑋 . It follows from the definition that 𝑚(𝐴 × 𝐵) =
`(𝐴) × a(𝐵) for all 𝐴 ∈ A and all 𝐵 ∈ B.

We start by showing that the tentative definition makes sense. We first show that
a(𝐶𝑥) is well-defined, that is, 𝐶𝑥 ∈ B. Let 𝑥 ∈ 𝑋 and define L := {𝐶 ∈ A⊗B : 𝐶𝑥 ∈ B}.
Then L contains the measure rectangles since, whenever 𝐶 = 𝐴 × 𝐵, 𝐶𝑥 = 𝐵 if 𝑥 ∈ 𝐴

and 𝐶𝑥 = ∅ if 𝑋 ∉ 𝐴. It also follows directly from the definition that L is a _-
system. By Dynkin’s 𝜋 − _ theorem, we have that A ⊗ B ⊆ L, and hence A ⊗ B = L
by definition of L. To verify that our tentative definition makes sense, we also have
to prove that 𝑥 ↦→ a(𝐶𝑥) is A-measurable. Suppose first that a is finite and define
L′ := {𝐶 ∈ A ⊗ B : 𝑥 ↦→ a(𝐶𝑥) is A-measurable}. Then L′ contains the measurable
rectangles since a(𝐶𝑥) = 1𝐴(𝑥)a(𝐵) for 𝐶 = 𝐴 × 𝐵. Moreover, L′ is a _-system:
𝑋 ×𝑌 ∈ L′; if𝐶 ⊆ 𝐶′, then a((𝐶′ \𝐶)𝑥) = a(𝐶′

𝑥) − a(𝐶𝑥) (by finiteness of a); if the (𝐶𝑛)
form an increasing sequence, then a((⋃𝑛 𝐶𝑛)𝑥) = lim𝑛 a((𝐶𝑛)𝑥). By Dynkin’s 𝜋 − _

theorem, we have that A⊗B ⊆ L′, and hence A⊗B = L′ by definition of L′. This proves
that 𝑥 ↦→ a(𝐶𝑥) is A-measurable. If a is only 𝜎-finite, we choose a sequence (𝐵𝑛)𝑛∈N
as above and consider a𝑛 (𝐵) = a(𝐵 ∩ 𝐵𝑛) to obtain that 𝑥 ↦→ a(𝐶𝑥) = lim𝑛 a𝑥 (𝐶𝑥) is
measurable for all 𝐶 ∈ A ⊗ B.

We now show that 𝑚 is a measure on A ⊗ B. It follows directly from the properties
of the integral and the definition of 𝑚 that 𝑚(𝐶) ≥ 0 for all 𝐶 ∈ A ⊗ B and 𝑚() = 0.
For countable additivity, consider a disjoint family (𝐶𝑛)𝑛∈N in A ⊗ B. Then the (𝐶𝑛)𝑥
form a disjoint family in B for all 𝑥 ∈ 𝑋 . Thus 𝑚(⋃𝑛 𝐶𝑛) =

∫
𝑋
a((⋃𝑛 𝐶𝑛)𝑥) 𝑑`(𝑥) =∫

𝑋
a(⋃𝑛 (𝐶𝑛)𝑥 𝑑`(𝑥) =

∫
𝑋

∑
𝑛 a((𝐶𝑛)𝑥) 𝑑`(𝑥) =

∑
𝑛

∫
𝑋
a((𝐶𝑛)𝑥) 𝑑`(𝑥) =

∑
𝑛 𝑚(𝐶𝑛).

Hence 𝑚 is a measure, and this concludes the proof. □

Reference. T.5.2.1. in Le Gall’s notes p.58 or T.18.2. in Billingsley PM p.232-233.

Lemma 11 (Fubini–Tonelli Theorem). Let ` and a be 𝜎-finite measures on the measur-
able spaces (𝑋,A) and (𝑌,B), respectively. Let 𝑓 : 𝑋 × 𝑌 → [0, +∞] be a measurable
function. Then

(i) the functions

𝑥 ↦→
∫
𝑌

𝑓 (𝑥, 𝑦) 𝑑a(𝑦),

𝑦 ↦→
∫
𝑋

𝑓 (𝑥, 𝑦) 𝑑`(𝑥)

are A-measurable and B-measurable, respectively;
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(ii) ∫
𝑋×𝑌

𝑓 (𝑥, 𝑦) 𝑑 (` × a) (𝑥, 𝑦) =
∫
𝑌

(∫
𝑋

𝑓 (𝑥, 𝑦) 𝑑`(𝑥)
)
𝑑a(𝑦),

=

∫
𝑋

(∫
𝑌

𝑓 (𝑥, 𝑦) 𝑑a(𝑦)
)
𝑑`(𝑥).

Proof. 1. Let 𝐶 ∈ A ⊗ B. If 𝑓 = 1𝐶 , we have already proved that the func-
tion 𝑥 ↦→

∫
𝑌
𝑓 (𝑥, 𝑦) 𝑑a(𝑦) = a(𝐶𝑥) is A-measurable. Similarly, the function 𝑥 ↦→∫

𝑋
𝑓 (𝑥, 𝑦) 𝑑`(𝑥) = `(𝐶𝑦), where 𝐶𝑦 = {𝑥 ∈ 𝑋 : (𝑥, 𝑦) ∈ 𝐶} for any 𝑦 ∈ 𝑌 , is

B-measurable. By linearity, the result is true for any positive simple function. For 𝑓 posi-
tive, we can write 𝑓 = lim𝑛 𝑓𝑛 whee the 𝑓𝑛 form an increasing sequence of positive simple
functions. Then (MON) yields

∫
𝑌
𝑓 (𝑥, 𝑦) 𝑑a(𝑦) = lim𝑛

∫
𝑌
𝑓𝑛 (𝑥, 𝑦) 𝑑a(𝑦), from which

the result follows. Similarly, we can show the measurability of 𝑦 ↦→
∫
𝑋
𝑓 (𝑥, 𝑦) 𝑑`(𝑥).

2. Let 𝐶 ∈ A ⊗ B. For 𝑓 = 1𝐶 , the result rewrites as ` × a(𝐶) =
∫
𝑋
a(𝐶𝑥) 𝑑`(𝑥) =∫

𝑌
`(𝐶𝑦) 𝑑a(𝑦). We have already proved the first equality in the proof of the existence

of the product measure. The second equality can be proved in the same way and by
using the uniqueness of ` × a. The result follows for any positive simple function by
linearity, and for arbitrary positive function by taking an increasing sequence of positive
simple functions and using (MON). Indeed, we note for instance that if 𝑓 = lim𝑛 ↑ 𝑓𝑛,
then

∫
𝑋
(
∫
𝑌
𝑓 (𝑥, 𝑦) 𝑑a(𝑦)) 𝑑`(𝑥) = lim𝑛

∫
𝑋
(
∫
𝑌
𝑓𝑛 (𝑥, 𝑦) 𝑑a(𝑦)) 𝑑`(𝑥) by applying (MON)

twice. This concludes the proof. □

Reference. T.5.3.1 in Le Gall’s notes p.61.
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