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To prove Lévy’s continuity theorem, we use Prokhorov’s theorem and a lemma for
the application of Prokhorov’s theorem, which were both proved in Lecture 16.

Theorem 1 (Lévy’s Continuity Theorem). Let u, uy, ua, ... be Borel probability mea-
sures on R%. Denote the characteristic function of p; by fi;(€) = / X du(x) for all
£eR4

1. If up ~> 1, then limy,—,eo fin (&) = (&) for all € € RY.

2. If there is a function ¢ partially continuous at 0 (that is, continuous at 0 along
each coordinate axis) such that lim,_ f1,(¢) = @(&) for all ¢ € R4, then ¢ is the
characteristic function of some Borel probability measure u’ on R¢ and pi, ~> ',

Remark. Since any characteristic function is continuous at O (and hence partially contin-
uous at 0), we directly have the equivalence: u, ~» u if and only if lim,_ (i, (£) = (&)
for all & € RY.

Remark. The standard proof of the indirect implication in Lévy’s continuity theorem,
which is the difficult part of the theorem, is a direct application of Prokhorov’s theorem:
(1) an integral inequality is derived to prove that the assumption in (2.) implies tightness
of (tn)nen; (ii) Prokhorov’s theorem is invoked from tightness to show that every subse-
quence of (u,)nen has a convergent sub-subsequence; (iii) then the direct implication of
Lévy’s continuity theorem and the uniqueness theorem is used to get the uniqueness of
the limit in case of convergence of the subsequence; (iv) Lemma 3 is invoked.

Remark. The proof of Lévy’s continuity theorem may seem involved due to the invocation
of Prokhorov’s theorem (which we proved using the Riesz representation theorem), but
this is an artifact of the fact that we proved Prokhorov’s theorem in a much more general
case than R¥. In practice, it suffices to prove Helly’s selection theorem. Simpler proofs
that do not even call for this result have been worked out.

Proof. 1. Since x — ¢{¢>*) is a bounded and continuous function for any & € R?, we
have by definition of weak convergence that lim,, e /i, (&) = fi(¢) for all £ € RY.

2. Consider the coordinate axis lines & = (0,...,0,£;,0,...,0) for j = 1,...,d.
Since fi, is continuous at 0 with £, (0) = 1, for a given ¢ > 0, we can take 6 < 0
small enough so that |, (&) — 1| < &/7d for |£] < 6 and £ on the axes. By Lemma 4,
Hn(lxjl = 1/6) < %foé 1 —Re(fin,j(&)) déj for all n € N and all j where u, ; is the
distribution of the jth one-dimensional projection under . Then by (DOM) we have
that %/051 - Re(f1,,j(&é)))dé; < g/d for all n > ng for some large enough ny € N
and all j. Thus u,(|¢;| > 1/6) < g/d for all n > ng and all j. For n < ng, by



countable additivity there is some M,, < oco such that P(|£;| > M,) < &/d for all j.
Define M := max(1/6,max{M; : 0 < j < no}). Then u,(|¢;| > M) < g/d for all
neNandall j =1,...,d. If Cis the cube {¢ € R : |¢;| < Mforj = 1,...,d},
then u,(C) > 1 — & for all n € N. This proves that (u,)nen is tight. By Prokhorov’s
theorem, every subsequence of (u,),en has a weakly convergent sub-subsequence. If a
subsequence of (u,,)nen Weakly converges to some limit u’, then (1.) in Lévy’s continuity
theorem and the uniqueness theorem imply that y’ is unique. By Lemma 3, we conclude

that u, ~» u’. O
Reference. T.9.8.2. in Dudley RAP p.326 or T.6.11. in Bhattacharya&Waymire BCPT
p-117-118 or T.15.24. in Klenke PT p.345.

Lemma 2 (Prokhorov’s Theorem). Let (X, d) be a metric space, M1(X) the space of
all Borel probability measures endowed with the topology of weak convergence, and N a
subset of M (X).

1. If N is tight, then N is relatively sequentially compact.

2. If (X, d) is Polish and N is relatively sequentially compact, then N is tight.

Proof. See Lecture 16. O

Lemma 3. Let X be a metric space and (x,)nen a sequence in X. Suppose (xXp)nen
satisfies the two properties:

1. every sub-sequence of (x,,)nen has a convergent sub-subsequence;

2. 1f (xp, )ken is a convergent sub-sequence of (X,)nen, then its limit is x.
Then (x,,)nen is a convergent sequence and its limit is x.

Proof. See Lecture 16. O

Lemma 4. Let u be a Borel probability measure on R. Then for any a € (0, +00),

u(IXI > é) < %/ I - Re(A(&)) dé.
0

t — (sint)/t is an even function, we may assume without loss of generality that ¢ > 0.
Since sin 1 > 0.8, the claim holds for¢ > 1.3. For1 <t < 1.3,¢ + (sint?)/tis decreasing,
hence the preliminary result. We now prove the main result. By the Tonelli-Fubini, we

have
1 a _ B B sin(ax)
a/o ‘/Rl cos(fx)dy(x)df—/Rl " du(x).

Then by the preliminary claim, we get

/1 _sinlax) o = (1 sinl),u(lxl > 1).
R ax a

Since sin 1 < 6/7, this yields the result. O

Proof. We first prove that for any ¢ with |[f| > 1, we have (sin¢)/t < sinl. Since

Reference. T.9.8.1. in Dudley RAP p.325. (Similar inequalities e.g. in T.3.3.17. in
Durrett PTE p.132 or T.6.11. in Bhattacharya&Edward BCPT p.118.)

Lemma 5. The characteristic function of the Gaussian distribution v = N (m, 02 is given

forall £ € R by
P(E) = elémem T EN,



Proof. We have by definition V(&) = fR L_o=(x-m)?/(20%) 4ix§ gy We derive the

o\2n _
result for m = 0 and o = 1 and use the facts that Vo x4, (&) = €$™Px(0é) and

that if X ~ N(0,1), then oX + m ~ N(m,c?). By parity, the imaginary part of
¥ is equal to zero. It remains to compute f(&) = /R \/%76"‘2/ 2 cos(x&) dx. Since

|x sin(xf)e"‘z/ 2| < |x|e‘x2/ 2 which is integrable, we can differentiate under the integral
2
sign so that f'(¢) = /R ﬁxe‘x /2sin(x&) dx. By integration by parts, we find that

(¢ = /R ﬁe‘xz/zf cos(xé) dx = =£f(&). The function f is thus solution to the
differential equation f’(£) = —£f(¢) with initial condition f(0) = 1. Tt follows that
£(£) = e=¢7/2, which concludes the proof. o

Reference. 1..8.2.3. in Le Gall’s notes p.104.

Lemma 6 (Uniqueness Theorem). If u and v are Borel probability measures on R? with
same characteristic function, then u = v.

Proof. Let u be a Borel probability measure on R?. We equivalently show that the Fourier
transform defined on Borel probability measures on R is injective, that is, u +— f is
injective. Suppose first that d = 1. For any o > 0, denote g, the density of the
distribution v, = N(0, c?). Consider the convolution of measures o = y * v, that
is, forany A € B(R), s (A) = fpr La(x +y) du(x) dvy (y) = [, dt [, g0 (x = 1) du(x).
The injectivity of the Fourier transform follows from two points: 1. if we know f,
we can compute u, for all & > 0; 2. if we know (us)o>0, Wwe can compute y. For
the first part, note from last lemma that e~ (x=1?20% Vijo(x —1). Thus pus(A) =

/A dt fRZ #ﬂeiy(.x_t) dvy)o(y) du(x) = fA dtfR ~ lzﬂe_iyt)ﬁ(y) dvi(y), which is
completely determined by fi. For the second part, we show that i ~» paso — 0. Let
be a bounded and uniformly continuous function on R. Let & > 0. We can find 6 > 0 such
thatif [x—y| < dthen | f(x)—f(y)] < &. Wehavef hdus =E (h(X+Ys)) where X ~ u,

Y ~ v, and X and Y independent. We have that P(|Y-| = 1) = 2/7700 #ﬂe‘yz/zaz dy =
2

3% Injer eV 2 dy = ¢(n/o) is a decreasing function in /o~ with lim,_,g ¢(n/0) = 0.
Moreover, we have that | [ hdug— [ hdu| = [E(h(X+Ye) —h(X)| <E(|f(X+Yo) -
FXOU Ly, 1<n)+2BP(|Ys| > 1) < £+2Bp(n/o) where B is abound for |2| on R. Then
for o sufficiently small, we have | f h d,ug—f hdu| < e. Thuslimg_0 f hduys = f hdu
for any function /& bounded and uniformly continuous, hence p, ~» u as o — 0 by
Portmanteau. This concludes the proof for d = 1. For d > 1, the proof follows similarly

by considering the functions gg,fi ) (X1y..0yxq) = H?:] g (x;) and by noting that for any
ger?, [, e (e e dx = TIL, [ g0 (xi)e'é% dx; = (2ma?) 219 (£). o

Reference. T.8.2.4. in Le Gall’s notes p.104. or P.2.6. in Méliot’s notes p.34 or T.9.5.1.
in Dudley RAP p.303 or T.6.9. in Bhattacharya& Waymire BCPT p.116.

Addendum. Some important results of measure theory and Lebesgue integra-
tion.

Lemma 7 (Convergence Theorems for Lebesgue Integration). Let (X, A, 1) be a measure
space.

1. (Monotone Convergence) If ( f,,)nen is a sequence of measurable functions from
X to [0, +00] such that f, < fu+1 foralln € N, then

n—oo

lim [ f,du= / lim f, du.
X X n—oo
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2. (Fatou) If (f,)nen is a sequence of measurable functions from X to [0, +o0], then

/1im inf f, du < lim inf/ fadu.
X n—00 n—o0 X

3. (Dominated Convergence) If ( f,,)nen is a sequence of measurable functions from
X to [—o0, +o0] such that lim,,_, f, = f where f: X — [—c0, +o0] is measurable and if
there exists an integrable function g: X — [0, +o0] such that | f,,| < g foralln € N, then
fand fi, f>, ... are integrable and

lim [ [fu - fldu=0,
n—oo Jy

and, in particular,

lim | f,du =/fd,u.
X X

n—oo

Proof. 1. (MON) Write f := lim, .« f,, = sup,, fn, then f: X — [0, +o0] is measurable.
Since the f, are non-decreasing to f, we have from monotonicity of the integral that
f Jfa du is non-decreasing and bounded above by f f du, hence lim,,_,q fX fudu <
fX f du. We now show that /X fdu < lim,_ /X fn du. By definition, it suffices to
show that fX gdu < limy,_,o fX fn du where g is a simple function such that 0 < g < f.
Without loss of generality (by vertical truncation if needed), we may assume g finite
everywhere so that there exist reals 0 < ¢; < +oo0 and disjoint measurable sets Ay, ..., Ax
such that g = 5= ¢;14,, and hence /Xg du = % cip(A). Let0 < & < 1. Then
we have f(x) = sup, fu(x) > (1 —&)c; for all x € A;. Define A;, = {x € A; :
fa(x) > (1 — &)c;}. Then the A;, increase to A; and are measurable. By upwards
monotonicity of measures, we get lim, o t(A; ) = u(A;). Moreover, observe that
a2 Zf;l (I = &)cily,, for any n € N. By monotonicity of the integral, we obtain
ffn du > (1—g) > i = 1%c;u(A; ). Taking limits as n — co, we get lim,,_, o, ffn du >
(1-¢) Zle cip(A;). Taking € — 0, we conclude that fXg du < lim,,_,q fX fndu.

2. (Fatou) We have liminf f;, = limg_e(inf,>x f), hence by (MON)
flim inf f,, du = limk_,oo/infnzk Jfn du. Moreover, for all p > k, we have inf,>¢ f;, <
fp, so that by monotonicity f inf,,>x fudu < infp,>p f fp du. By taking limits when
k — o0, we get limgoo [ infysk frdpt < limg—sooinf s [ fp du = liminf [ f,, dy, and
this concludes the proof.

3. Since |f,| < g and |f| < g and fgdu < oo, then the f,, and f are integrable.
Moreover, since |f — f,| < 2g and |f — f,| — 0, we can use Fatou’s lemma to get
liminf [(2g = |f = ful)du > [liminf(2g — | f — ful)du =2 [ g du. By linearity of the
integral, we have2fgd/1—lim supf |f = fuldu = 2fgd,u. Thus limsupf |f = fuldu =
0, and so flf—fnldu — 0. Since |ffd,u —ff,,d,u| < f|f—fn|d,u, we get that
/ fndu — f f du. This concludes the proof. O

Reference. For (MON) see T.1.4.44. in Tao MT p.107 or T.2.1.1. in Le Gall’s notes
p-19. For (Fatou) see T.2.1.5. in Le Gall’s notes p.22 or C.1.4.47. in Tao MT p.110. For
(DOM) see T.2.2.1. in Le Gall’s notes p.25 or T.1.4.49. in Tao MT p.111.

Lemma 8 (Dynkin’s 7—A Theorem). Let X be a nonempty setandC C L C 2X nonempty
collections of sets. Suppose that C is a n-system, that is, A, B € C implies AN B € C.
Suppose that L is a A-system, thatis, X € L, A,B€ Land A C Bimply B\ A € L, and
Ap € Land A, C Apyy foralln € Nimply ;| A, € L. Then o(C) C L.
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Proof. Let Ly be the intersection of all A-systems containing C. It is a A-system that
contains C and that is contained in every A-system that contains C, hence C C Lo C L. If
we can show that £ is also a w-system, then it will follow that L is a o--algebra. Indeed,
a A-system that is also a m-system is a o-algebra: by taking complements, a A-system is
closed under finite unions, and by taking an increasing limit for sets A, = Bj U --- U By,
closed under countable unions. If we prove that Lo 2 C is a o-algebra, then from the
minimality of o (C) we will have that C € o(C) € Lo € L, hence completing the proof.
We thus have to prove that £y is a 7-system.

Let A € C. Define £; ={B € Ly : AN B € Ly}. Since C is closed under finite
intersections, we have C C £;. We now show that £; is a A-system: X € £ by definition;
if BB € Liand B C B’,then AN(B’\B) = (ANB’)\(ANB) € Ly,hence B'\B € Ly;
if B, € £ for all n and (Bj;)nen is increasing, then A N (|J,, Bn) = U,,(A N B,) € Ly,
hence | J,, B, € L. Since L is a A-system that contains C, then £y C £; by minimality
of Ly. Therefore, for all A € C and all B € L, we have A N B € L.

The same argument can be applied again, but this time to any fixed B € Ly and
Ly={A € Ly: An B € Ly}. The same arguments using the last claim in last paragraph
shows that £, is a A-system that contains C, and hence that £y C £, by minimality of L.
This proves that for all A € Ly and all B € L, we have A N B € Ly, which concludes the
proof. |

Reference. T.3.2. in Billingsley PM p.42 or T.1.4.1. in Le Gall’s notes p.15.

Lemma 9. Let p and v be two measures on a measurable space (X, A). Suppose that
there exists a nt-system C C 2% such that A = o-(C) and u(C) = v(C) for all C € C.

1 If u(X) =v(X) < oo, then u = v.

2. If there exists a sequence of sets (Xp)nen such that for alln € N, X,, € C,
Xn € Xpst, Upy X = X, and p(X,,) = v(Xy) < oo, then i = v.

Proof. 1. Define L := {A € A: u(A) = v(A)}. Then C C L. We show that L is a
A-system: X € L by hypothesis; if A, B € Land A C B, then u(B\ A) = u(B) — u(A) =
v(B) —v(A) =v(B\ A),hence B\ A € L;if A,, € L for all n and (A, ),en is increasing,
then u(UJ,, An) = sup,, u(A,) = sup, v(A,) = v(U, An), hence | J,, A, € L. It follows
that A = 0-(C) C L by Dynkin’s 7 — A theorem. Thus £ = A, and so u = v.

2. Define for all n € N the restriction of u and v to X,, by u,, and v,,, that is, for all
Ae A u,(A) = u(ANnX,) and v,(A) := v,(ANX,). Then apply (1.) to u, and v,,
so that u, = v,. By taking an increasing limit for the sets A N X,,, we have for all A € A
that u(A) = sup,, u(AN X,) =sup, v(ANX,) =v(A),and so u = v. O

Reference. C.1.4.2. in Le Gall’s notes p.16 or T.3.3. in Billingsley PM p.42.

Lemma 10 (Existence of Product Measure). Let u and v be o-finite measures
on the measurable spaces (X, A) and (Y,B), respectively. Define A ® B =
oc({AXB:Ae A BeB}). Then there exists a unique o-finite measure m on the
product space (X XY, A® B) such that forall A € Aand all B € B,

m(A X B) = u(A) x v(B).

The measure m is alternatively denoted X v.



Proof. (Uniqueness.) Define C,, := A, X B,, where A, € A and B,, € B are increasing
sequences with u(A,) < oo, v(B,) < oo, |J,An = X, and |J,, B, = Y. Then the
C, form an increasing sequence of sets such that | J,C, = X X Y. Let m and m’ be
two measures satisfying the property of the product measure. Then for all n € N,
m(Cp) = u(A,)Xv(B,) =m’(C,) < oco. Moreover, m and m’ coincide for all measurable
rectangles which form a z-system generating .4 ® B. By Dynkin’s 7 — A theorem, we
have m = m’.

(Existence.) Define tentatively for all C € A ® B, m(C) = /X v(Cy) du(x) where
Cy={yeY:(x,y) € C}forany x € X. It follows from the definition that m(A X B) =
u(A) x v(B) forall A € Aandall B € B.

We start by showing that the tentative definition makes sense. We first show that
v(Cy) is well-defined, thatis, C, € B. Letx € X and define £ := {C € A®B : C, € B}.
Then £ contains the measure rectangles since, whenever C = A X B, Cy = Bifx € A
and C, = 0 if X ¢ A. It also follows directly from the definition that £ is a A-
system. By Dynkin’s 7 — A theorem, we have that A ® B C £, and hence A® B = L
by definition of £. To verify that our tentative definition makes sense, we also have
to prove that x — v(Cy) is A-measurable. Suppose first that v is finite and define
L ={C e A® B : x — v(Cy) is A-measurable}. Then £’ contains the measurable
rectangles since v(Cy) = 1x(x)v(B) for C = A X B. Moreover, L' is a A-system:
XxY e /L';ifC € C’,thenv((C'\C)x) = v(C,)—v(Cy) (by finiteness of v); if the (Cy,)
form an increasing sequence, then v((|J,, Cy)x) = lim, v((C,)x). By Dynkin’s 7 — A
theorem, we have that A® B € £’, and hence A® B = L’ by definition of £’. This proves
that x — v(Cy) is A-measurable. If v is only o-finite, we choose a sequence (B;,),en
as above and consider v,(B) = v(B N B,,) to obtain that x — v(Cy) = lim, v, (Cy) is
measurable for all C € A ® B.

We now show that m is a measure on A ® B. It follows directly from the properties
of the integral and the definition of m that m(C) > 0 for all C € A® B and m() = 0.
For countable additivity, consider a disjoint family (C,,),,ei in A ® B. Then the (C,)y
form a disjoint family in B for all x € X. Thus m(|J,, C,) = fx v((U, Ch)x) du(x) =
/X V(Un(Cn)x du(x) = /X Zn v((Cn)x) du(x) = Zn ./X v((Cn)x) du(x) = Zn m(Cp).

Hence m is a measure, and this concludes the proof. ]
Reference. T.5.2.1. in Le Gall’s notes p.58 or T.18.2. in Billingsley PM p.232-233.

Lemma 11 (Fubini-Tonelli Theorem). Let u and v be o-finite measures on the measur-
able spaces (X, A) and (Y, B), respectively. Let f: X XY — [0, +o0] be a measurable
function. Then

(i) the functions

x i /Y Fry) dv(y),
y i /X Fy) du(x)

are A-measurable and B-measurable, respectively;



(i)
L;{ﬂmwdmxvxmywiﬁ(&f@»ﬁmwﬂdww,

:L(Lﬂxwwwﬁwwy

Proof. 1. Let C € AQ® B. If f = 1¢, we have already proved that the func-
tion x /Y f(x,y)dv(y) = v(Cy) is A-measurable. Similarly, the function x —
/Xf(x,y) du(x) = u(C”), where C¥ = {x € X : (x,y) € C} forany y € ¥, is
B-measurable. By linearity, the result is true for any positive simple function. For f posi-
tive, we can write f = lim,, f,, whee the f; form an increasing sequence of positive simple
functions. Then (MON) yields fo(x,y) dv(y) = lim, /Y fu(x,y)dv(y), from which
the result follows. Similarly, we can show the measurability of y + fx f(x,y) du(x).

2. Let C € A® B. For f = 1¢, the result rewrites as u X v(C) = fX v(Cy) du(x) =
fY u(C”)dv(y). We have already proved the first equality in the proof of the existence
of the product measure. The second equality can be proved in the same way and by
using the uniqueness of y X v. The result follows for any positive simple function by
linearity, and for arbitrary positive function by taking an increasing sequence of positive
simple functions and using (MON). Indeed, we note for instance that if f = lim,, T f,
then [ ([, £(x.y) dv(y)) du(x) =1lim, [ ([, fa(x.y) dv(y)) du(x) by applying (MON)
twice. This concludes the proof. |

Reference. T.5.3.1 in Le Gall’s notes p.61.
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