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Theorem 1 ((Generalized) Glivenko—Cantelli Theorem (with Bracketing)). Let
(X, A, P) be a probability space and F a collection of measurable functions f: X — R.
If N(j(&, F,L1(P)) < oo forall € > 0, then F is P-Glivenko—Cantelli, that is,

1B, = Pllz := ( sup [P f —Pfl) —0
feF n—eo
where P, f = /fdPn = %E?:l f(X;) with X; ~iiq. P and Pf = /fdP, the
superscript * denotes outer probabilities defined for any subset B of X as P*(B) =
inf{P(A) : A 2 B,A € A}, and Ny|(&,F,L((P)) is the Ly bracketing number of
F defined as the minimum number of Li-g-brackets [l,uls = {f € F : 1l < f <
u for some integrable functions l,u: X — R with |[u — I||; < &} to cover F.

Proof. Let ¢ > 0. Pick finitely many L,-g-brackets ([I;, u;]¢)i=1,....m of F such that
m = Npj(&, F, L1(P)). In particular, the union of the [/;, u;] . contains F and ||u; —[;||; =
[ lui = fildP = [(u; - f;) dP = P(u; — f;) < &. Then for all f € F, there is a bracket
[l;,u;] such that (P, — P)f < (P, — P)u; + P(u; — f) < (P, — P)u; +gand (P-P,)f <
(P=Pp)li+e. Thussup sz |[(Pn—P) f| < e+maxi<i<m(Pp—P)u; Vmaxi<j<m(P—Pn)l;.
By the strong law of large numbers for real random variables applied 2m times, the right
side converges to & a.s. as n — oo. Thus limsup,, (supscr [(Py — P)f]) < & as.* for
every ¢ > 0. By taking a sequence ¢ | 0O, the limsup is 0 a.s.*. This concludes the
proof. O

Reference. T.2.4.1. in Wellner&vdV WCEP p.122 or T.6.1. in Wellner’s EP notes p.34
or L.3.1. in van de Geer AEP p.25.

Remark. There are measurability issues with sup of uncountable families, hence the need
to consider outer probability and outer expectation, which were introduced by Hoffmann-
Jgrgensen and Dudley. A similar issue exists for stochastic processes in exotic spaces.

Lemma 2 (Chebyshev’s Inequality). For any real random variable X and t > 0,

EX?
P(|X|=1) < t_2

Proof. We have EX? > E(X?1x|>,) > 1*P(|X| > 1). O

Reference. T.8.3.1. in Dudley RAP p.261.



Lemma 3 (Borel-Cantelli Lemma). Ler (X, A, P) be a probability space and (A,)nen
a sequence of measurable sets. Define the event limsup, A, = (\us1 Unsm An(=:
Api.0.). If Y o P(Ay) < oo, then P(limsup,, A,) = 0.

Proof. Foreachm € N, wehave P(limsup, A,) < P(Upsm An) < D5 P(An), where
the second inequality follows from the union bound. Since ., P(A,) < oo, we have
Y nom P(Ay) = 0asm — oo. |

Reference. T.8.3.4. in Dudley RAP p.262.

Lemma 4. For any nonnegative random variable Y, we have EY < > * P(Y > n) <
EY + 1. Thus EY < o ifand only if > P(Y > n) < 0.

Proof. Define Ay = {k <Y < k+1} for k =0,1,.... Then Y " P(Y > n) =
Yoo oksn P(AK) =3 5o (k+1)P(Ay), by rearranging sums of positive terms. Define
U:=> 1 okla,. ThenU <Y <U+1,50 EU < EY < EU+1 < EY + 1, from which
the result follows. m]

Reference. 1..8.3.6. in Dudley RAP p.263.

Lemma 5 ((Kolmogorov—Etemadi) Strong Law of Large Numbers). Let (X,,),en be a
sequence of identically distributed pairwise independent real-valued random variables
such that B |X,| < +co. Let Sy =Y 1 X, and E X, = m. Then

Sn a.s.

— —m.

n
Proof. Since pairwise independence is preserved under a Borel transformation and X,, =
X, — X,; where X} := max(X,,0) and X, := —min(X,, 0), we can prove the results for
X, > 0 without loss of generality.

Define Y, := X, 1(x,<n) and T, := Z?:l Y;. The Y, form a sequence of pairwise
independent random variables with moments of all orders (note that the Y, are not
identically distributed). Given « > 1, define the fast time scale k(n) := [a"] where [x]
denotes the greatest integer less than or equal to x.

Let € > 0. By Chebyshev’s inequality and pairwise independence, we have
P(|Tkny = ETeany)| > 8k(n) < Var(Tigm)/k(m)?e? = S5 Var(¥) /k(n)?e? <
SV EVEk(n)e? = LY E(XPL <)) [k ()28 = XL E(XFLix, <ip) [k (n)%6? <
S EX x <k (k262 = E(XPL(x,<k(u) k()& Thus Y =
Somct PUTkny = ETemyl > ek(n)) < Yol E(X{Lix <k(m)y) /k(n)&?
e ’E (X12 > et Lix, <k(n)} /k(n)) where the equality follows from Fubini-Tonelli.

Letx > 0 and define N := min{n > 1: k(n) > x}. Then @ > x, and since y < 2[y]
for any y > 1, we have > .7 Lixck(n)y /k(n) = D240y L/k(n) <237 ya™ =
ca™™ < ¢/x where ¢ = 2a/(a — 1). Thus Y o, 1ix,<k(n))/k(n) < a/X; for X; >
0. Therefore » < ae’EX, < oo. By the Borel-Cantelli lemma, we have [Ty (,) —
ETy(n)|/k(n) — Oa.s.. By the dominated convergence theorem, EY; = E (X;1(x,<;}) —
EXj asi — oo. It follows that ETy,)/k(n) — EXjasn — oco. Thus Ty, /k(n) — EX;
a.s. asn — oo.

Furthermore, since EX,, < oo by hypothesis, Y, P(X,, #Y,) =), P(X, > n) < o
by Lemma 4. By the Borel-Cantelli lemma, X,, — Y, — 0 a.s. as n — oo, hence
(S, =Tn)/n — 0 as. as n — oo. By the previous result, Sg(,)/k(n) — EXj as. as



n— oo. If k(n) <m < k(n+ 1), then %i"(f; < 3m < ki(;z;;) }j’(‘;'j:f; since X, > 0.

Sm <

But k(n+1)/k(n) — @ asn — oo, hence LEX| < liminf,—w 32 < limsup,,_,,
aEX; as.. Letting @ — 1 via rational @ > 1, we get limy;, o S;/m = EX| a.s.. This
concludes the proof. O

Reference. The proof is from Etemadi (1981). See T.5.4. in Bhattacharya&Waymire
p-89 or T.2.4.1. in Durrett PTE p.76 or T.8.3.5. in Dudley RAP p.263 (which is stated
for independent RVs but without change for the proof). For another proof based on the
convergence of random series (using Kolmogorov’s maximal inequality), see Kallenberg
FMP (T.5.23. p.113) or Dembo’s notes (S.2.3.2. p.91).
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