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We assume all the topological spaces to be Hausdorff. For the proof of this theorem,
we use the KKM lemma which was proved in lecture 1.

Theorem 1 (Von Neumann-Sion Minimax Theorem). Let X be a convex compact
subset of a topological vector space and Y a convex subset of a topological vector space.
If f: X XY — Ris a function such that:

1. forallx € X, y — f(x,y) is upper semicontinuous and quasiconcave;

2. forally €Y, x — f(x,y) is lower semicontinuous and quasiconvex;
Then

min sup f(x,y) = supmin f(x,y).
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Reference. The result is from Sion (1958) "On general minimax theorems" which he
proved using the KKM lemma and Helly’s theorem. For a proofs, see Fan (1964) or
Takahashi (1976) or T.I1.7.1.4. in Granas&Dugundji FPT p.143 (the last two use the Fan—
Browder fixed point theorem derived from KKM and we follow them). For alternative
proofs using simpler arguments, see Ghouila-Houri (1966) or Komiya (1988) or Kindler
(2005). See also Aubin O&E. See Simons (1995) "Minimax Theorems and Their Proofs"
for a general survey of minimax theorems.

Proof. Since X is compact and x +— f(x,y) is Isc, minyex f(x,y) exists. Since x —
f(x,y) is Isc, x > sup,y f(x,y) is Isc, and, similarly, minyex supycy f(x,y) exists.
Since f(x,y) < supyey f(x,¥), mingex f(x,y) < mingexsupyey f(x,y), and thus
Supy, ey Minyex f(x,y) < minyex supyey f(x,).

Suppose for now that Y is compact. By contradiction, suppose there exists r € R such
that SUpy,cy minyex f(x,y) < r < mingex SUpy,cy f(x,y). Define the correspondences
S: X33YandT: X 3YbySx) ={yeY: f(x,y) >r}andT(x) ={y €Y :
f(x,y) <r}. Each T(x) is open by u.s.c. of y — f(x,y) and each S(x) is convex by the
quasi-concavity of y  f(x, y) and nonempty since sup, .y minyex f(x,y) < r. Since
ST'y)={xeX: f(x,y)>r}and T~ (y) = {x € X : f(x,y) < r}, we similarly have
that each S~!(y) is open and each T~'(y) is convex and nonempty. Then, by Lemma 5,
there exists (xg, yo) € X X Y such that yo € S(xg) N T (xp), thatis, r < f(xg,yo) <7: a
contraction.

Suppose now that Y is not compact. Suppose again by contraction that there exists
r € R such that sup,, .y minyex f(x,y) < r < minyex supyy f(x,y). Then there exists
a finite set S C Y such that for any x € X, there is y € § with f(x,y) > r. Taking f’ =
f|X><conv(S)’ we get SUPyeconv(S) minyex f/ (x, y) < r < mingex SUPy econv(s) f/(xa Y)-
This contradicts the previous result for Y compact. O



Let E be a vector space and X C FE an arbitrary subset. Denote conv({xy,...,x,}) the
convex hull of a finite collection of points x1,...,x, in X. A correspondence 7: X =3 E
is said to be a Knaster-Kuratowski-Mazurkiewicz map (or KKM-map) if

conv({xy,...,x,}) C U T(x;)
i=1

for every finite subset {xi,...,x,} of X.

Lemma 2. Let X be a nonempty convex subset of a vector space and T: X =3 X. If the
dual of G defined by G*: y — X -T ' (y) = X —{x € X : y € T(x)} is not a KKM-map,
then:

1. there exists a point w € X such that w € conv(T (w));

2. if T has convex values, then T has a fixed point.

Proof. Since (1.) directly implies (2.), it suffices to prove (1.). Since G* is not a

KKM-map, there exists w € conv({xi,...,x,}) for some x,...,x, € X such that
weX-UL T (x)=X-UL (X- T-'(x;)) = - T-'(x;). Therefore x; € T(w) for
eachi € {1,...,n},and sow € conv(T (w)). O

Reference. 1..3.1.3. in Granas&Dugundji FPT p.38.

Lemma 3 (Knaster—Kuratowski—-Mazurkiewicz (KKM) Lemma). Let {xo,x1,...,xq} C
R and A = conv{x; : i € {0, 1,...,d}} the d-simplex with vertices {xy, X1, ..., Xn}.
Let Fy, Fy, ..., Fg be closed subsets ofAd such that for every I C {0, 1,...,d}, we have
conv{x; : i € It C ;¢; Fi. Then the intersection ﬂfl:o F; is nonempty and compact.

Proof. See Lecture 1. O

Lemma 4 (Fan—Browder Fixed Point Theorem). Let X be a convex compact subset of
a topological vector space and T : X =3 X a correspondence.

1. If T has nonempty convex values and for each y € X, the set T~ (y) := {x € X :
y €T (x)} is openin X, then T has a fixed point.

2. If T has open values and for each y € X, the set T™'(y) :={x € X : y € T(x)} is
a nonempty convex subset of X, then T has a fixed point.

Proof. Since T satisfies the conditions of (2.) if and only if 7! := y + T~!(y) satisfies
the conditions of (1.), it suffices to prove (1.). Define the dual of T as the correspondence
T* := y — X —T7!(y). Since T has nonempty values, 7~ is surjective. We thus
have {T*(y) 1y € X} = ({X-T'(y) : y e X} =X -U{T'(y) : y € X} = 0.
Since X is compact and T has open values, the values of 7* are compact. It follows that

©1T*(x;) = 0 for some xi,...,x, in X. By the KKM lemma, it follows that 7™ is
not a KKM-map. Since T has convex values, it follows by Lemma 2 that 7' has a fixed
point. O

Reference. T.7.1.2. in Granas&Dugundji FPT p.143.

Lemma 5 (Fan’s Coincidence Theorem). Let X and Y be convex compact subsets of some
topological vector spaces. Let S: X 3 Y and T: X 3 Y be correspondences such that:
(i) S has open values and for each 'y € Y, the set T"'(y) = {x e X : y e T(x)} isa
nonempty convex subset of X, (ii) T has nonempty convex values and for each 'y € Y, the



set T™1(y) :={x € X :y € T(x)} is open in X. Then there exists (xo, yo) € X X Y such
that yo € S(xo) N T (xo).

Proof. LetZ = XxY anddefine H: Z =3 Zby H((x,y)) = T~!(y) xS(x). It follows that
the values of H are open and for each (x,y) € Z, the sets H ' (x,y) = S™!(y) X T(x) are
nonempty and convex. By Lemma 4, H has a fixed point. That is, there exists (xg, yo) € Z
such that (xg, yg) € 7! (y0) X S(xg). Thus yo € S(xgp) N T (xp). O

Reference. T.7.1.3. in Granas&Dugundji FPT p.143.
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