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We assume all the topological spaces to be Hausdorff. For the proof of this theorem,
we use the KKM lemma which was proved in lecture 1.

Theorem 1 (Von Neumann–Sion Minimax Theorem). Let 𝑋 be a convex compact
subset of a topological vector space and 𝑌 a convex subset of a topological vector space.
If 𝑓 : 𝑋 × 𝑌 → R is a function such that:

1. for all 𝑥 ∈ 𝑋 , 𝑦 ↦→ 𝑓 (𝑥, 𝑦) is upper semicontinuous and quasiconcave;
2. for all 𝑦 ∈ 𝑌 , 𝑥 ↦→ 𝑓 (𝑥, 𝑦) is lower semicontinuous and quasiconvex;

Then
min
𝑥∈𝑋

sup
𝑦∈𝑌

𝑓 (𝑥, 𝑦) = sup
𝑦∈𝑌

min
𝑥∈𝑋

𝑓 (𝑥, 𝑦).

Reference. The result is from Sion (1958) "On general minimax theorems" which he
proved using the KKM lemma and Helly’s theorem. For a proofs, see Fan (1964) or
Takahashi (1976) or T.II.7.1.4. in Granas&Dugundji FPT p.143 (the last two use the Fan–
Browder fixed point theorem derived from KKM and we follow them). For alternative
proofs using simpler arguments, see Ghouila-Houri (1966) or Komiya (1988) or Kindler
(2005). See also Aubin O&E. See Simons (1995) "Minimax Theorems and Their Proofs"
for a general survey of minimax theorems.

Proof. Since 𝑋 is compact and 𝑥 ↦→ 𝑓 (𝑥, 𝑦) is lsc, min𝑥∈𝑋 𝑓 (𝑥, 𝑦) exists. Since 𝑥 ↦→
𝑓 (𝑥, 𝑦) is lsc, 𝑥 ↦→ sup𝑦∈𝑌 𝑓 (𝑥, 𝑦) is lsc, and, similarly, min𝑥∈𝑋 sup𝑦∈𝑌 𝑓 (𝑥, 𝑦) exists.
Since 𝑓 (𝑥, 𝑦) ≤ sup𝑦∈𝑌 𝑓 (𝑥, 𝑦), min𝑥∈𝑋 𝑓 (𝑥, 𝑦) ≤ min𝑥∈𝑋 sup𝑦∈𝑌 𝑓 (𝑥, 𝑦), and thus
sup𝑦∈𝑌 min𝑥∈𝑋 𝑓 (𝑥, 𝑦) ≤ min𝑥∈𝑋 sup𝑦∈𝑌 𝑓 (𝑥, 𝑦).

Suppose for now that𝑌 is compact. By contradiction, suppose there exists 𝑟 ∈ R such
that sup𝑦∈𝑌 min𝑥∈𝑋 𝑓 (𝑥, 𝑦) < 𝑟 < min𝑥∈𝑋 sup𝑦∈𝑌 𝑓 (𝑥, 𝑦). Define the correspondences
𝑆 : 𝑋 ⇒ 𝑌 and 𝑇 : 𝑋 ⇒ 𝑌 by 𝑆(𝑥) = {𝑦 ∈ 𝑌 : 𝑓 (𝑥, 𝑦) > 𝑟} and 𝑇 (𝑥) = {𝑦 ∈ 𝑌 :
𝑓 (𝑥, 𝑦) < 𝑟}. Each 𝑇 (𝑥) is open by u.s.c. of 𝑦 ↦→ 𝑓 (𝑥, 𝑦) and each 𝑆(𝑥) is convex by the
quasi-concavity of 𝑦 ↦→ 𝑓 (𝑥, 𝑦) and nonempty since sup𝑦∈𝑌 min𝑥∈𝑋 𝑓 (𝑥, 𝑦) < 𝑟 . Since
𝑆−1(𝑦) = {𝑥 ∈ 𝑋 : 𝑓 (𝑥, 𝑦) > 𝑟} and 𝑇−1(𝑦) = {𝑥 ∈ 𝑋 : 𝑓 (𝑥, 𝑦) < 𝑟}, we similarly have
that each 𝑆−1(𝑦) is open and each 𝑇−1(𝑦) is convex and nonempty. Then, by Lemma 5,
there exists (𝑥0, 𝑦0) ∈ 𝑋 × 𝑌 such that 𝑦0 ∈ 𝑆(𝑥0) ∩ 𝑇 (𝑥0), that is, 𝑟 < 𝑓 (𝑥0, 𝑦0) < 𝑟: a
contraction.

Suppose now that 𝑌 is not compact. Suppose again by contraction that there exists
𝑟 ∈ R such that sup𝑦∈𝑌 min𝑥∈𝑋 𝑓 (𝑥, 𝑦) < 𝑟 < min𝑥∈𝑋 sup𝑦∈𝑌 𝑓 (𝑥, 𝑦). Then there exists
a finite set 𝑆 ⊆ 𝑌 such that for any 𝑥 ∈ 𝑋 , there is 𝑦 ∈ 𝑆 with 𝑓 (𝑥, 𝑦) > 𝑟 . Taking 𝑓 ′ =

𝑓 |𝑋×conv(𝑆) , we get sup𝑦∈conv(𝑆) min𝑥∈𝑋 𝑓 ′(𝑥, 𝑦) < 𝑟 < min𝑥∈𝑋 sup𝑦∈conv(𝑆) 𝑓
′(𝑥, 𝑦).

This contradicts the previous result for 𝑌 compact. □
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Let 𝐸 be a vector space and 𝑋 ⊆ 𝐸 an arbitrary subset. Denote conv({𝑥1, . . . , 𝑥𝑛}) the
convex hull of a finite collection of points 𝑥1, . . . , 𝑥𝑛 in 𝑋 . A correspondence 𝑇 : 𝑋 ⇒ 𝐸

is said to be a Knaster-Kuratowski-Mazurkiewicz map (or KKM-map) if

conv({𝑥1, . . . , 𝑥𝑛}) ⊆
𝑛⋃
𝑖=1

𝑇 (𝑥𝑖)

for every finite subset {𝑥1, . . . , 𝑥𝑛} of 𝑋 .

Lemma 2. Let 𝑋 be a nonempty convex subset of a vector space and 𝑇 : 𝑋 ⇒ 𝑋 . If the
dual of 𝐺 defined by 𝐺∗ : 𝑦 ↦→ 𝑋 −𝑇−1(𝑦) = 𝑋 − {𝑥 ∈ 𝑋 : 𝑦 ∈ 𝑇 (𝑥)} is not a KKM-map,
then:

1. there exists a point 𝑤 ∈ 𝑋 such that 𝑤 ∈ conv(𝑇 (𝑤));
2. if 𝑇 has convex values, then 𝑇 has a fixed point.

Proof. Since (1.) directly implies (2.), it suffices to prove (1.). Since 𝐺∗ is not a
KKM-map, there exists 𝑤 ∈ conv({𝑥1, . . . , 𝑥𝑛}) for some 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 such that
𝑤 ∈ 𝑋 −⋃𝑛

𝑖=1 𝑇
∗(𝑥𝑖) = 𝑋 −⋃𝑛

𝑖=1(𝑋 −𝑇−1(𝑥𝑖)) =
⋂𝑛

𝑖=1 𝑇
−1(𝑥𝑖). Therefore 𝑥𝑖 ∈ 𝑇 (𝑤) for

each 𝑖 ∈ {1, . . . , 𝑛}, and so 𝑤 ∈ conv(𝑇 (𝑤)). □

Reference. L.3.1.3. in Granas&Dugundji FPT p.38.

Lemma 3 (Knaster–Kuratowski–Mazurkiewicz (KKM) Lemma). Let {𝑥0, 𝑥1, . . . , 𝑥𝑑} ⊆
R𝑑+1 and Δ𝑑 = conv{𝑥𝑖 : 𝑖 ∈ {0, 1, . . . , 𝑑}} the 𝑑-simplex with vertices {𝑥0, 𝑥1, . . . , 𝑥𝑛}.
Let 𝐹0, 𝐹1, . . . , 𝐹𝑑 be closed subsets of Δ𝑑 such that for every 𝐼 ⊆ {0, 1, . . . , 𝑑}, we have
conv{𝑥𝑖 : 𝑖 ∈ 𝐼} ⊆ ⋃

𝑖∈𝐼 𝐹𝑖 . Then the intersection
⋂𝑑

𝑖=0 𝐹𝑖 is nonempty and compact.

Proof. See Lecture 1. □

Lemma 4 (Fan–Browder Fixed Point Theorem). Let 𝑋 be a convex compact subset of
a topological vector space and 𝑇 : 𝑋 ⇒ 𝑋 a correspondence.

1. If 𝑇 has nonempty convex values and for each 𝑦 ∈ 𝑋 , the set 𝑇−1(𝑦) := {𝑥 ∈ 𝑋 :
𝑦 ∈ 𝑇 (𝑥)} is open in 𝑋 , then 𝑇 has a fixed point.

2. If 𝑇 has open values and for each 𝑦 ∈ 𝑋 , the set 𝑇−1(𝑦) := {𝑥 ∈ 𝑋 : 𝑦 ∈ 𝑇 (𝑥)} is
a nonempty convex subset of 𝑋 , then 𝑇 has a fixed point.

Proof. Since 𝑇 satisfies the conditions of (2.) if and only if 𝑇1 := 𝑦 ↦→ 𝑇−1(𝑦) satisfies
the conditions of (1.), it suffices to prove (1.). Define the dual of 𝑇 as the correspondence
𝑇∗ := 𝑦 ↦→ 𝑋 − 𝑇−1(𝑦). Since 𝑇 has nonempty values, 𝑇−1 is surjective. We thus
have

⋂{𝑇∗(𝑦) : 𝑦 ∈ 𝑋} =
⋂{𝑋 − 𝑇−1(𝑦) : 𝑦 ∈ 𝑋} = 𝑋 − ⋃{𝑇−1(𝑦) : 𝑦 ∈ 𝑋} = ∅.

Since 𝑋 is compact and 𝑇 has open values, the values of 𝑇∗ are compact. It follows that⋂𝑛
𝑖=1 𝑇

∗(𝑥𝑖) = ∅ for some 𝑥1, . . . , 𝑥𝑛 in 𝑋 . By the KKM lemma, it follows that 𝑇∗ is
not a KKM-map. Since 𝑇 has convex values, it follows by Lemma 2 that 𝑇 has a fixed
point. □

Reference. T.7.1.2. in Granas&Dugundji FPT p.143.

Lemma 5 (Fan’s Coincidence Theorem). Let 𝑋 and𝑌 be convex compact subsets of some
topological vector spaces. Let 𝑆 : 𝑋 ⇒ 𝑌 and 𝑇 : 𝑋 ⇒ 𝑌 be correspondences such that:
(i) 𝑆 has open values and for each 𝑦 ∈ 𝑌 , the set 𝑇−1(𝑦) := {𝑥 ∈ 𝑋 : 𝑦 ∈ 𝑇 (𝑥)} is a
nonempty convex subset of 𝑋; (ii) 𝑇 has nonempty convex values and for each 𝑦 ∈ 𝑌 , the
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set 𝑇−1(𝑦) := {𝑥 ∈ 𝑋 : 𝑦 ∈ 𝑇 (𝑥)} is open in 𝑋 . Then there exists (𝑥0, 𝑦0) ∈ 𝑋 × 𝑌 such
that 𝑦0 ∈ 𝑆(𝑥0) ∩ 𝑇 (𝑥0).

Proof. Let 𝑍 = 𝑋×𝑌 and define 𝐻 : 𝑍 ⇒ 𝑍 by 𝐻 ((𝑥, 𝑦)) = 𝑇−1(𝑦) ×𝑆(𝑥). It follows that
the values of 𝐻 are open and for each (𝑥, 𝑦) ∈ 𝑍 , the sets 𝐻−1(𝑥, 𝑦) = 𝑆−1(𝑦) × 𝑇 (𝑥) are
nonempty and convex. By Lemma 4, 𝐻 has a fixed point. That is, there exists (𝑥0, 𝑦0) ∈ 𝑍

such that (𝑥0, 𝑦0) ∈ 𝑇−1(𝑦0) × 𝑆(𝑥0). Thus 𝑦0 ∈ 𝑆(𝑥0) ∩ 𝑇 (𝑥0). □

Reference. T.7.1.3. in Granas&Dugundji FPT p.143.
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