Lecture 2. Von Neumann–Sion minimax theorem

Paul Delatte

delatte@usc.edu University of Southern California

Last updated: 31 December, 2022

We assume all the topological spaces to be Hausdorff. For the proof of this theorem, we use the KKM lemma which was proved in lecture 1.

Theorem 1 (Von Neumann–Sion Minimax Theorem). Let X be a convex compact subset of a topological vector space and Y a convex subset of a topological vector space. If $f : X \times Y \rightarrow \mathbb{R}$ is a function such that:

1. for all $x \in X$, $y \mapsto f(x, y)$ is upper semicontinuous and quasiconcave;

2. for all $y \in Y$, $x \mapsto f(x, y)$ is lower semicontinuous and quasiconvex; Then

$$\min_{x \in X} \sup_{y \in Y} f(x, y) = \sup_{y \in Y} \min_{x \in X} f(x, y).$$

Reference. The result is from Sion (1958) "On general minimax theorems" which he proved using the KKM lemma and Helly's theorem. For a proofs, see Fan (1964) or Takahashi (1976) or T.II.7.1.4. in Granas&Dugundji FPT p.143 (the last two use the Fan–Browder fixed point theorem derived from KKM and we follow them). For alternative proofs using simpler arguments, see Ghouila-Houri (1966) or Komiya (1988) or Kindler (2005). See also Aubin O&E. See Simons (1995) "Minimax Theorems and Their Proofs" for a general survey of minimax theorems.

Proof. Since X is compact and $x \mapsto f(x, y)$ is lsc, $\min_{x \in X} f(x, y)$ exists. Since $x \mapsto f(x, y)$ is lsc, $x \mapsto \sup_{y \in Y} f(x, y)$ is lsc, and, similarly, $\min_{x \in X} \sup_{y \in Y} f(x, y)$ exists. Since $f(x, y) \leq \sup_{y \in Y} f(x, y)$, $\min_{x \in X} f(x, y) \leq \min_{x \in X} \sup_{y \in Y} f(x, y)$, and thus $\sup_{y \in Y} \min_{x \in X} f(x, y) \leq \min_{x \in X} \sup_{y \in Y} f(x, y)$.

Suppose for now that *Y* is compact. By contradiction, suppose there exists $r \in \mathbb{R}$ such that $\sup_{y \in Y} \min_{x \in X} f(x, y) < r < \min_{x \in X} \sup_{y \in Y} f(x, y)$. Define the correspondences $S: X \rightrightarrows Y$ and $T: X \rightrightarrows Y$ by $S(x) = \{y \in Y : f(x, y) > r\}$ and $T(x) = \{y \in Y : f(x, y) < r\}$. Each T(x) is open by u.s.c. of $y \mapsto f(x, y)$ and each S(x) is convex by the quasi-concavity of $y \mapsto f(x, y)$ and nonempty since $\sup_{y \in Y} \min_{x \in X} f(x, y) < r$. Since $S^{-1}(y) = \{x \in X : f(x, y) > r\}$ and $T^{-1}(y) = \{x \in X : f(x, y) < r\}$, we similarly have that each $S^{-1}(y)$ is open and each $T^{-1}(y)$ is convex and nonempty. Then, by Lemma 5, there exists $(x_0, y_0) \in X \times Y$ such that $y_0 \in S(x_0) \cap T(x_0)$, that is, $r < f(x_0, y_0) < r$: a contraction.

Suppose now that Y is not compact. Suppose again by contraction that there exists $r \in \mathbb{R}$ such that $\sup_{y \in Y} \min_{x \in X} f(x, y) < r < \min_{x \in X} \sup_{y \in Y} f(x, y)$. Then there exists a finite set $S \subseteq Y$ such that for any $x \in X$, there is $y \in S$ with f(x, y) > r. Taking $f' = f|_{X \times \operatorname{conv}(S)}$, we get $\sup_{y \in \operatorname{conv}(S)} \min_{x \in X} f'(x, y) < r < \min_{x \in X} \sup_{y \in \operatorname{conv}(S)} f'(x, y)$. This contradicts the previous result for Y compact.

Let *E* be a vector space and $X \subseteq E$ an arbitrary subset. Denote $conv(\{x_1, \ldots, x_n\})$ the convex hull of a finite collection of points x_1, \ldots, x_n in *X*. A correspondence $T: X \rightrightarrows E$ is said to be a Knaster-Kuratowski-Mazurkiewicz map (or KKM-map) if

$$\operatorname{conv}(\{x_1,\ldots,x_n\}) \subseteq \bigcup_{i=1}^n T(x_i)$$

for every finite subset $\{x_1, \ldots, x_n\}$ of X.

Lemma 2. Let X be a nonempty convex subset of a vector space and $T: X \Rightarrow X$. If the dual of G defined by $G^*: y \mapsto X - T^{-1}(y) = X - \{x \in X : y \in T(x)\}$ is not a KKM-map, then:

1. there exists a point $w \in X$ *such that* $w \in \text{conv}(T(w))$ *;*

2. if T has convex values, then T has a fixed point.

Proof. Since (1.) directly implies (2.), it suffices to prove (1.). Since G^* is not a KKM-map, there exists $w \in \text{conv}(\{x_1, \ldots, x_n\})$ for some $x_1, \ldots, x_n \in X$ such that $w \in X - \bigcup_{i=1}^n T^*(x_i) = X - \bigcup_{i=1}^n (X - T^{-1}(x_i)) = \bigcap_{i=1}^n T^{-1}(x_i)$. Therefore $x_i \in T(w)$ for each $i \in \{1, \ldots, n\}$, and so $w \in \text{conv}(T(w))$.

Reference. L.3.1.3. in Granas&Dugundji FPT p.38.

Lemma 3 (Knaster–Kuratowski–Mazurkiewicz (KKM) Lemma). Let $\{x_0, x_1, \ldots, x_d\} \subseteq \mathbb{R}^{d+1}$ and $\Delta^d = \operatorname{conv}\{x_i : i \in \{0, 1, \ldots, d\}\}$ the d-simplex with vertices $\{x_0, x_1, \ldots, x_n\}$. Let F_0, F_1, \ldots, F_d be closed subsets of Δ^d such that for every $I \subseteq \{0, 1, \ldots, d\}$, we have $\operatorname{conv}\{x_i : i \in I\} \subseteq \bigcup_{i \in I} F_i$. Then the intersection $\bigcap_{i=0}^d F_i$ is nonempty and compact.

Proof. See Lecture 1.

Lemma 4 (Fan–Browder Fixed Point Theorem). Let X be a convex compact subset of a topological vector space and
$$T: X \Rightarrow X$$
 a correspondence.

1. If T has nonempty convex values and for each $y \in X$, the set $T^{-1}(y) := \{x \in X : y \in T(x)\}$ is open in X, then T has a fixed point.

2. If T has open values and for each $y \in X$, the set $T^{-1}(y) := \{x \in X : y \in T(x)\}$ is a nonempty convex subset of X, then T has a fixed point.

Proof. Since *T* satisfies the conditions of (2.) if and only if $T^1 := y \mapsto T^{-1}(y)$ satisfies the conditions of (1.), it suffices to prove (1.). Define the dual of *T* as the correspondence $T^* := y \mapsto X - T^{-1}(y)$. Since *T* has nonempty values, T^{-1} is surjective. We thus have $\bigcap \{T^*(y) : y \in X\} = \bigcap \{X - T^{-1}(y) : y \in X\} = X - \bigcup \{T^{-1}(y) : y \in X\} = \emptyset$. Since *X* is compact and *T* has open values, the values of T^* are compact. It follows that $\bigcap_{i=1}^{n} T^*(x_i) = \emptyset$ for some x_1, \ldots, x_n in *X*. By the KKM lemma, it follows that T^* is not a KKM-map. Since *T* has convex values, it follows by Lemma 2 that *T* has a fixed point.

Reference. T.7.1.2. in Granas&Dugundji FPT p.143.

Lemma 5 (Fan's Coincidence Theorem). Let X and Y be convex compact subsets of some topological vector spaces. Let $S: X \rightrightarrows Y$ and $T: X \rightrightarrows Y$ be correspondences such that: (i) S has open values and for each $y \in Y$, the set $T^{-1}(y) := \{x \in X : y \in T(x)\}$ is a nonempty convex subset of X; (ii) T has nonempty convex values and for each $y \in Y$, the set $T^{-1}(y) := \{x \in X : y \in T(x)\}$ is open in X. Then there exists $(x_0, y_0) \in X \times Y$ such that $y_0 \in S(x_0) \cap T(x_0)$.

Proof. Let $Z = X \times Y$ and define $H: Z \rightrightarrows Z$ by $H((x, y)) = T^{-1}(y) \times S(x)$. It follows that the values of H are open and for each $(x, y) \in Z$, the sets $H^{-1}(x, y) = S^{-1}(y) \times T(x)$ are nonempty and convex. By Lemma 4, H has a fixed point. That is, there exists $(x_0, y_0) \in Z$ such that $(x_0, y_0) \in T^{-1}(y_0) \times S(x_0)$. Thus $y_0 \in S(x_0) \cap T(x_0)$.

Reference. T.7.1.3. in Granas&Dugundji FPT p.143.

References

- AUBIN, J.-P. (2002): *Optima and equilibria: an introduction to nonlinear analysis*, vol. 140. Springer Science & Business Media.
- FAN, K. (1964): "Sur un théoreme minimax," CR Acad. Sci. Paris, 259, 3925-3928.
- GHOUILA-HOURI, M. (1966): "Le théorème minimax de Sion," *Theory of Games, Engl.* Univ. Press, London, pp. 123–129.
- GRANAS, A., AND J. DUGUNDJI (2003): Fixed point theory, vol. 14. Springer.
- KINDLER, J. (2005): "A simple proof of Sion's minimax theorem," *The American Mathematical Monthly*, 112(4), 356–358.
- Komiya, H. (1988): "Elementary proof for Sion's minimax theorem," *Kodai mathematical journal*, 11(1), 5–7.
- SION, M. (1958): "On general minimax theorems.," Pacific J. Math., 8(4), 171-176.
- TAKAHASHI, W. (1976): "Nonlinear variational inequalities and fixed point theorems," *Journal of the Mathematical Society of Japan*, 28(1), 168–181.