Lecture 4. Banach's fixed point theorem

Paul Delatte delatte@usc.edu University of Southern California

Last updated: 31 December, 2022

Theorem 1 (Banach's Fixed Point Theorem). Let X be a complete (nonempty) metric space and $f: X \to X$ a K-Lipschitz function, that is, $d(f(x), f(y)) \leq Kd(x, y)$ for all $x, y \in X$. If K < 1, then there is a unique $x^* \in X$ such that $f(x^*) = x^*$. Moreover, for each point $x_0 \in X$, the sequence $(f^n(x_0)_n)_{n \in \mathbb{N}}$ converges to x^* as $n \to \infty$.

Proof. Let K < 1 and $f: X \rightarrow X$ be K-Lipschitz.

(Uniqueness.) Let $x, y \in X$ such that f(x) = x and f(y) = y. Then $d(x, y) \le Kd(x, y)$, which can only happens if d(x, y) = 0, i.e., if x = y.

(*Existence.*) Pick $x_0 \in X$ arbitrarily and define the sequence (x_n) recursively by setting $x_{n+1} = f(x_n)$ for n = 0, 1, ... For $n \ge 1$, we have $d(x_{n+1}, x_n) = d(f(x_n), f(x_{n-1}) \le Kd(x_n, x_{n+1})$. By recursion, we get that for all $n \in \mathbb{N}_0$, $d(x_{n+1}, x_n) \le K^n d(x_1, x_0)$. If n < m, then $d(x_n, x_m) \le \sum_{i=n+1}^m d(x_i, x_{i-1}) \le (K^n + K^{n+1} + \dots + K^{m-1})d(x_1, x_0) \le ((1-c)^{-1}d(x_1, x_0))K^n$. This proves that (x_n) is a Cauchy sequence. Since X is complete, $\lim_{n\to\infty} x_n = x$ for some $x \in X$. By continuity of f, $\lim_{n\to\infty} f(x_n) = f(x)$, but $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} x_{n+1} = x$, hence f(x) = x by uniqueness of limits of sequences.

Reference. T.9.23. in Rudin PMA p.220 or "Lipschitz's theorem" in Berge TS p.105 or T.I.1.1. in Granas&Dugundji FPT p.10. The theorem is also known as Banach's contraction principle.

References

BERGE, C. (1963): Topological spaces. Oliver & Boyd.

GRANAS, A., AND J. DUGUNDJI (2003): Fixed point theory, vol. 14. Springer.

RUDIN, W., ET AL. (1976): Principles of mathematical analysis, vol. 3. McGraw-Hill.