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To prove this theorem, we use a geometric variation of the Hahn-Banach extension
theorem which was proved in Lecture 5.

Theorem 1 (Farkas’ Lemma). Let 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚. Then exactly one the
following propositions is true, but not both.

1. There exists 𝑥 ∈ R𝑛 such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0𝑛.
2. There exists 𝑦 ∈ R𝑚 such that 𝐴𝑇 𝑦 ≥ 0𝑚 and 𝑏𝑇 𝑦 < 0.

Proof. We first prove that both propositions cannot be true simultaneously. Suppose they
are. Since 𝑏𝑇 𝑦 < 0, we have 𝑦 ≠ 0𝑚 and 𝑏 ≠ 0𝑚. Since 𝐴𝑥 = 𝑏, we have 𝑥 ≠ 0𝑛. Thus
𝑏𝑇 𝑦 = (𝐴𝑥)𝑇 𝑦 = 𝑥𝑇𝐴𝑇 𝑦 ≥ 0, which contradict 𝑏𝑇 𝑦 < 0.

Suppose now that (1.) is false. Then 𝑏 ∉ 𝑆 = {𝐴𝑥 : 𝑥 ≥ 0𝑛}. The set 𝑆 is a finitely
generated cone which is easily seen to be convex. By Lemma 2, we also have that 𝑆 is
closed. The conditions of the Hahn–Banach separation theorem in LCTVS are satisfied
for {𝑏} compact and 𝑆 closed, hence there exists 𝑦 ≠ 0𝑚 and 𝛼 ∈ R such that 𝑏𝑇 𝑦 < 𝛼

and 𝑧𝑇 𝑦 ≥ 𝛼 for all 𝑧 ∈ 𝑆. Since 0𝑚 ∈ 𝑆, we have 𝛼 ≤ 0, and so 𝑏𝑇 𝑦 < 0. By definition
of 𝑆, we also have that 𝑝𝑇𝐴𝑇 𝑦 = (𝐴𝑝)𝑇 𝑦 ≥ 𝛼 for all 𝑝 ≥ 0𝑛. If there is 𝑝0 ≥ 0𝑛 such that
𝑝𝑇0 𝐴

𝑇 𝑦 < 0, then this contradicts 𝑝𝑇𝐴𝑇 𝑦 ≥ 𝛼 for all 𝑝 ≥ 0𝑛, since for _ > 0, _𝑝0 ≥ 0𝑛,
_𝑝0 ∈ 𝑆, and lim_→+∞(_𝑝0)𝑇𝐴𝑇 𝑦 = lim_→+∞ _𝑝𝑇0 𝐴

𝑇 𝑦 = −∞. Therefore, 𝑝𝑇𝐴𝑇 𝑦 ≥ 0
for all 𝑝 ≥ 0𝑛, which implies that 𝐴𝑇 𝑦 ≥ 0𝑚. Thus (2.) is true. □

Remark. There exist at least three ways of proving Farkas’ lemma (see C.G. Broyden
(1998)): algorithmic proofs based for instance on the dual simplex method (as originally
done by Farkas); algebraic proofs (either inductive or not); geometric proofs based on the
Hahn–Banach separation theorem. In the first two proofs, there is a risk of incomplete-
ness for not handling properly the possibility of degenerate solutions (originating from
redundant constraints). Geometric proofs have the advantage of conciseness and bypass
the problem of degeneracy by relating "each theorem of the alternative [...] to a pair
of dual problems: A primal steepest-descent problem and a dual least-norm problem"
(as quoted in C.G. Broyden (2008)). A common shortcoming of the geometric proof
as presented in textbooks is that the proposition that any finitely generated conical hull
𝑆 = {𝐴𝑥 : 𝑥 ≥ 0𝑛} is closed is admitted, while it is the nontrivial part of the proof.

Remark. In the geometric proof, the hyperplane can also be directly constructed without
invoking the Hahn–Banach theorem but by taking the hyperplane with normal 𝑦 = 𝑧 − 𝑏

where 𝑧 is the nearest point in 𝑆 from 𝑏 (whose existence need to be proved) – see S.6.5.
Matousek&Gärtner Understanding and Using Linear Programming p.95. A similar idea
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can be used to directly proving separating hyperplane theorems in R𝑛 (here for a point
and a cone, but the same idea generalize to two convex sets). This elementary way of
doing does not require the axiom of choice (see remark in Rockafellar CA S.11). But we
already knew it from the proof of the Hahn–Banach theorem which works by transfinite
induction on the dimension, hence the consequence for finite dimensions.

Reference. We take the geometric route using the Hahn–Banach separation theorem for
LCTVS. We follow T.3.30. in Andreasson&Evgrafov&Patriksson ICO p.57 or L.10.2.-
3. in Beck INO p.192-193. A slightly different formulation of the result with a proof
in the same spirit can be found in Berge (1963) p.164. See also T.4.3.4 in Hiriart-
Urruty&Lemarechal FCA p.60 and C.5.84.-85. in Aliprantis&Border (2006) p.209 for
more general formulations (in different directions) than ours with the same geometric
proof.

Remark. For equivalent results to Farkas’ lemma, see "All linear theorems of the alter-
native have a common father. An addendum to a paper of C.T. Perng" by G. Giorgi
(2020). For generalizations of Farkas’ lemma, see "Farkas Lemma: Generalizations" by
V. Jeyakumar (2009) in the Encyclopedia of Optimization.

Lemma 2. Let {𝑎1, . . . , 𝑎𝑛} ⊆ R𝑚. Denote 𝐴 ∈ R𝑚×𝑛 the matrix with columns
𝑎1, . . . , 𝑎𝑛. Then the conical hull (finitely) generated by {𝑎1, . . . , 𝑎𝑛}

cone({𝑎1, . . . , 𝑎𝑛}) :=
{ 𝑛∑︁

𝑖=1

𝑥𝑖𝑎𝑖 : 𝑥 = (𝑥1, . . . , 𝑥𝑛) ≥ 0𝑛
}
= {𝐴𝑥 : 𝑥 ≥ 0𝑛}

is closed.

Proof. Suppose first that the 𝑎𝑖’s are linearly independent. Then the convergence of
(𝑦𝑘)𝑘∈N = (

∑𝑛
𝑖=1 𝑥

𝑘
𝑖
𝑎𝑖)𝑘∈N is equivalent to the convergence of each (𝑥𝑘

𝑖
)𝑘∈N to some 𝑥𝑖 ,

which must be nonnegative if each 𝑥𝑘
𝑖

in the sequence is.
Suppose on the contrary that

∑𝑛
𝑖=1 𝑥𝑖𝑎𝑖 = 0 has a nonzero solution 𝑧 ∈ R𝑛. Suppose

𝑧𝑖 < 0 for some 𝑖 (change 𝑧 to −𝑧 if necessary). Each 𝑦 ∈ cone({𝑎1, . . . , 𝑎𝑛}) can be
written as

𝑦 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑎𝑖 =

𝑛∑︁
𝑖=1

(𝑥𝑖 + 𝑡∗(𝑦)𝑧𝑖)𝑎𝑖 =
∑︁

𝑖≠ 𝑗 (𝑦)
𝑥′𝑖𝑎𝑖 ,

where
𝑗 (𝑦) ∈ arg min

𝑧𝑖<0

−𝑥𝑖
𝑧𝑖

, and 𝑡∗(𝑦) =
−𝑥 𝑗 (𝑦)

𝑧 𝑗 (𝑦)
,

so that each 𝑥′
𝑖
= 𝑥𝑖 + 𝑡∗(𝑦)𝑧𝑖 is nonnegative. By making 𝑦 vary in cone({𝑎1, . . . , 𝑎𝑛}),

we can construct a decomposition cone({𝑎1, . . . , 𝑎𝑛}) =
⋃𝑛

𝑗=1 𝑆 𝑗 where 𝑆 𝑗 is the conical
hull of the 𝑛 − 1 generators 𝑎 𝑗 , 𝑗 ≠ 𝑖.

If there is some 𝑗 such that the generators of 𝑆 𝑗 are linearly dependent, then the
argument can be repeated to obtain a further decomposition of 𝑆 𝑗 . After finitely many
such operations (why finite?), we obtain a decomposition of cone({𝑎1, . . . , 𝑎𝑛}) as a
finite union of conical hull (finitely) generated by linearly independent elements. By the
first part of the proof, each of these conical hull is closed. Thus cone({𝑎1, . . . , 𝑎𝑛}) is
closed. □

Reference. The proof is standard: a representation result for conical hull is proved in
a similar way as in Carathéodory’s theorem’s standard proof. (Carathéodory’s theo-
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rem’s gives a representation result for convex hulls). We follow L.4.3.3. in Hiriart-
Urruty&Lemarechal FCA P.59-60. (See also L.6.32. in Beck INO p.111.) Alternative
proofs exist (see alternative proofs of Carathéodory’s theorem).

Lemma 3 (Hahn-Banach Separation Theorem in LCTVS). Let 𝑋 be a locally convex
topological vector space over R. Let 𝐴 and 𝐵 be subsets of 𝑋 . If 𝐴 and 𝐵 are disjoint
nonempty convex and if 𝐴 is compact and 𝐵 is closed, then then there exists a continuous
linear functional 𝑓 : 𝑋 → R and 𝛼 ∈ R such that 𝑓 (𝑥) < 𝛼 < 𝑓 (𝑦) for all 𝑥 ∈ 𝐴 and all
𝑦 ∈ 𝐵.

Proof. See Lecture 5. □
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