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To prove this theorem, we use Farkas’ lemma which was proved in Lecture 6 and
which itself was proved using the Hahn-Banach extension theorem which was proved in
Lecture 5.

Let 𝑓 : R𝑛 → R be a continuously differentiable function. We consider two problems.
Define (P) as

minimize 𝑓 (𝑥)
subject to 𝑥 ∈ 𝑆 (P)

where 𝑆 ⊂ R𝑛 is a nonempty closed set (called feasible region).
Define (Q) as

minimize 𝑓 (𝑥)
subject to 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑟 (Q)

ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, . . . , 𝑚

where the functions 𝑔𝑖 : R𝑛 → R and ℎ 𝑗 : R𝑛 → R are assumed continuously dif-
ferentiable. (We take R𝑛 as the domain of the functions for simplicity, but any
open subset of R𝑛 would work.) Problem (Q) is a version of problem (P) with
𝑆 = {𝑥 ∈ R𝑛 : 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑟, ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, . . . , 𝑚}.

Theorem 1 (Karush–Kuhn–Tucker (Necessary) Conditions). Let 𝑥∗ be a feasible
point for (Q) and 𝐼 (𝑥∗) = {𝑖 ∈ {1, . . . , 𝑟} : 𝑔𝑖 (𝑥∗) = 0}. Suppose that the vectors
{∇ℎ1(𝑥∗), . . . ,∇ℎ𝑚(𝑥∗)} ∪ {∇𝑔𝑖 (𝑥∗) : 𝑖 ∈ 𝐼 (𝑥∗)} are linearly independent. If 𝑥∗ is a
local minimizer for (Q), then there exists (𝜆, 𝜇) such that

∇ 𝑓 (𝑥∗) +
𝑟∑︁
𝑖=1

𝜆𝑖∇𝑔𝑖 (𝑥∗) +
𝑚∑︁
𝑗=1

𝜇 𝑗∇ℎ 𝑗 (𝑥∗) = 0,

and
𝜆 ≥ 0, and 𝜆𝑖𝑔𝑖 (𝑥∗) = 0 for all 𝑖 = 1, . . . , 𝑟 .

Proof. Under the assumptions of the theorem, the point 𝑥∗ must satisfy the John Fritz
conditions for (𝜆0, 𝜆, 𝜇). If 𝜆0 > 0, then define 𝜆′ = 𝜆/𝜆0 and 𝜇′ = 𝜇/𝜆0. The KKT
conditions then hold with (𝜆′, 𝜇′) for multipliers. Suppose now that 𝜆0 = 0. Then∑

𝑖∈𝐼 (𝑥∗ ) 𝜆𝑖∇𝑔𝑖 (𝑥∗) +
∑𝑚

𝑗=1 𝜇 𝑗∇ℎ 𝑗 (𝑥∗) = 0, and so the corresponding gradients are
linearly dependent, a contradiction. □
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Remark. There exist several proofs for the KKT theorem; the two most standard proofs
rely either: on some geometric arguments (using separation theorems for convex sets);
or on a penalization approach (see Güler FO S.9.2.). (Other proofs exist; see, e.g., a
proof through Ekeland’s 𝜀-variational principle as in Güler FO S.9.3.) Even though the
penalization approach is more concise, we follow a geometric route because it provides
the true foundation of the theory (especially when it comes to justifying constraint qual-
ifications). Note that some care has to be taken when dealing with problems containing
both inequality and equality constraints: in particular, one cannot simply derive the FJ
and KKT conditions for inequality constraints and then include equality constraints by
considering them as double inequalities (see p.121 in Bazaraa&Shetty FoO); in practice,
the equality constraints have to be dealt directly (and this generally requires some form
of the implicit function theorem or preliminary artillery that would lead to it – e.g., the
penalization approach does not use the implicit function theorem but the penalization
approach can be used to prove the implicit function theorem). As a consequence, it is
standard to well separate problems with inequality constraints only and problems with
both inequality and equality constraints, in particular when it comes to constraint qualifi-
cation (see, e.g., "A Guided Tour in Constraint Qualifications for Nonlinear Programming
under Differentiability Assumptions" by Giorgi). Finally, the assumptions of the theorem
are not the weakest (in terms of differentiability for instance); we refer to Blot in "On the
multiplier rules" (2016) for more details with respect to this specific set of assumptions.

Remark. (See C.5. in Bazaraa&Shetty FoO, C.9. in Güler FoO, S.5.3.-4. in Andreas-
son&Evgrafov&Patriksson ICO). The geometric proof proceeds in three steps: a geomet-
ric necessary condition for optimality is derived; the geometric condition is translated in
an analytic condition by conic approximation (FT); the analytic solution is made effective
(i.e., the multiplier for 𝑓 in FT is nonzero) under the condition that the approximation is
good enough (KKT). More precisely, the geometric proof is based on the basic idea that:
"if the point 𝑥∗ ∈ 𝑆 is a local minimum of 𝑓 over 𝑆, it should not be possible to draw a
curve starting at the point 𝑥∗ inside 𝑆, such that 𝑓 decreases along it arbitrarily close to
𝑥∗". This translates directly into the fact that the space of feasible directions at 𝑥∗ and
the space of strict descent direction at 𝑥∗ are disjoint. By convex approximation through
linearization, the sets can be separated and the existence of multipliers guaranteed. Under
the conditions that the approximations are good enough (conditions known as constraint
qualifications), the previous multipliers formulation can be made useful by guaranteeing
that the optimality conditions depend on 𝑓 (i.e., the multiplier 𝜇0 for 𝑓 in FT is nonzero).

Remark. If one does not want to prove the Hahn–Banach theorem and Farkas’ lemma, a
very simple proof under a slightly stronger rank condition is given by Brezhneva et al.
in "A simple and elementary proof of the Karush–Kuhn–Tucker theorem for inequality-
constrained optimization" (2009). Moreover, if one is only interested in inequality con-
straints, the proof can be substantially reduced, for technicalities calling for the implicit
function theorem are due to the inclusion of equality constraints. For our proof, we first
prove a version of Farkas’ lemma and then the implicit function theorem.

Reference. The proofs of KKT, FT, and Motzkin’s lemma follow from Freund’s lecture
notes for 15.084J at MIT. Similar proofs for FT and KKT can be found in Güler FO (see
T.9.4. and C.9.6.), as well as different proofs of Motzkin’s lemma (see comment p.71-72
in S.3.3.). Other results are referenced after their statement.
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Lemma 2 (Farkas’ Lemma). Let 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚. Then exactly one the following
propositions is true, but not both.

1. There exists 𝑥 ∈ R𝑛 such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0𝑛.
2. There exists 𝑦 ∈ R𝑚 such that 𝐴𝑇 𝑦 ≥ 0𝑚 and 𝑏𝑇 𝑦 < 0.

Proof. See Lecture 6. □

Lemma 3 (Motzkin’s Transposition Lemma). Given matrices 𝐴, 𝐵, and 𝐻, exactly one
of the two systems has a solution:

1. 𝐴𝑥 < 0, 𝐵𝑥 < 0, 𝐻𝑥 = 0;
2. 𝐴𝑇𝑢 + 𝐵𝑇𝑣 + 𝐻𝑇𝑤 = 0, (𝑢, 𝑣) ≥ 0, 1𝑇𝑢 = 1.

Proof. We first prove that the two systems cannot be true simultaneously. Suppose
(1.) is true for some 𝑥 and (2.) holds, then 𝑥𝑇 (𝐴𝑇𝑢 + 𝐵𝑇𝑣 + 𝐻𝑇𝑤) = 0, that is,
0 = 𝑢𝑇𝐴𝑥 + 𝑣𝑇𝐵𝑥 + 𝑤𝑇𝐻𝑥 = 𝑢𝑇𝐴𝑥 + 𝑣𝑇𝐵𝑥 < 0, a contradiction.

Suppose now that (1.) does not have a solution. Then for some 𝜃 > 0, the system
𝐴𝑥 + 1𝜃 ≤ 0, 𝐵𝑥 ≤ 0, 𝐻𝑥 ≤ 0, −𝐻𝑥 ≤ 0 has no solution. This system rewrites as

𝐴 1
𝐵 0
𝐻 0
−𝐻 0


[
𝑥

𝜃

]
≤ 0 ,

[
0 . . . 0 1

] [ 𝑥
𝜃

]
> 0.

From Farkas’ lemma, there exists (𝑢, 𝑣, 𝑤1, 𝑤2) ≥ 0 such that


𝐴 1
𝐵 0
𝐻 0
−𝐻 0


𝑇 

𝑢

𝑣

𝑤1
𝑤2

 =


0
...

0
1


.

This rewrites as
𝐴𝑇𝑢 + 𝐵𝑇𝑣 + 𝐻𝑇𝑤1 − 𝐻𝑇𝑤2 = 0, 1𝑇𝑢 = 1.

Taking 𝑤 = 𝑤1 − 𝑤2 concludes the proof. □

Lemma 4 (Implicit Function Theorem). Let 𝑋 ⊆ R𝑛 and 𝑌 ⊆ R𝑚 be open sets. Let
𝑓 : 𝑋 × 𝑌 → R𝑚 be a continuously differentiable function. If (𝑎, 𝑏) ∈ 𝑋 × 𝑌 is such that

𝑓 (𝑎, 𝑏) = 0 and 𝐷𝑦 𝑓 (𝑎, 𝑏) :=
[
𝜕 𝑓𝑖

𝜕𝑦 𝑗

(𝑎, 𝑏)
]
𝑚×𝑚

is invertible, then there exits open neighborhoods 𝑈 ⊆ 𝑋 of 𝑎 and 𝑉 ⊆ 𝑌 of 𝑏 and a
continuously differentiable function 𝑔 : 𝑈 ⊆ R𝑛 → 𝑉 ⊆ R𝑚 such that a point (𝑥, 𝑦) ∈
𝑈 ×𝑉 satisfies 𝑓 (𝑥, 𝑦) = 0 if and only if 𝑔(𝑥) = 𝑦. Moreover, the derivative of 𝑔 at 𝑥 ∈ 𝑈

is given by
𝐷𝑔(𝑥) = −𝐷𝑦 𝑓 (𝑥, 𝑔(𝑥))−1𝐷𝑥 𝑓 (𝑥, 𝑔(𝑥)).

Proof. Assume without loss of generality that (𝑎, 𝑏) = (0, 0) (otherwise, consider
(𝑥, 𝑦) ↦→ 𝑓 (𝑥 + 𝑎, 𝑦 + 𝑏) − 𝑓 (𝑎, 𝑏)). Since 𝐷 𝑓 is continuous and det is continuous,
there exists open neighborhoods 𝑈 of 0 and 𝑉 of 0, such that [𝜕 𝑓𝑖 (𝑥, 𝜁𝑖 𝑗)/𝜕𝑦 𝑗]𝑚×𝑚 is
invertible for all (𝑥, 𝜁𝑖 𝑗) ∈ 𝑈 × 𝑉 where 1 ≤ 𝑖, 𝑗 ≤ 𝑚. For each 𝑥 ∈ 𝑈, there exists at
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most one 𝑦 ∈ 𝑉 such that 𝑓 (𝑥, 𝑦) = 0. Suppose there exists 𝑦, 𝑧 ∈ 𝑉 , 𝑧 ≠ 𝑦, such that
𝑓 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑧) = 0. The mean value theorem implies that there exists 𝑤𝑖 ∈ (𝑦, 𝑧) such
that

0 = 𝑓𝑖 (𝑥, 𝑧) − 𝑓𝑖 (𝑥, 𝑦) = [𝐷𝑦 𝑓 (𝑥, 𝑤𝑖)]𝑖 (𝑧 − 𝑦)

for all 𝑖 = 1, . . . , 𝑚. Since the matrix with rows [𝐷𝑦 𝑓 (𝑥, 𝑤𝑖)]𝑖 is invertible as shown
above, we obtain that 𝑦 = 𝑧, a contradiction.

Let 𝐵̄𝑟 (0) ⊆ 𝑉 . Since 𝑓 (0, 0) = 0, we have 𝑓 (0, 𝑦) ≠ 0 for any 𝑦 ∈ 𝑆𝑟 (0) = {𝑦 ∈
R𝑚 : ∥𝑦∥ = 𝑟}. Since 𝑓 is continuous, there exists 𝛼 > 0 such that ∥ 𝑓 (0, 𝑦)∥ ≥ 𝛼 for
all 𝑦 ∈ 𝑆𝑟 (0). Define 𝐹 (𝑥, 𝑦) := ∥ 𝑓 (𝑥, 𝑦)∥2 =

∑𝑚
𝑖=1( 𝑓𝑖 (𝑥, 𝑦))2. Then 𝐹 (0, 𝑦) ≥ 𝛼 > 0

for 𝑦 ∈ 𝑆𝑟 (0) and 𝐹 (0, 0) = 0. Since 𝐹 is continuous, there exists an open neighborhood
𝑈′ ⊆ 𝑈 of 0 such that 𝐹 (𝑥, 𝑦) ≥ 𝛼/2, 𝐹 (𝑥, 0) ≤ 𝛼/2 for all 𝑥 ∈ 𝑈′ and all 𝑦 ∈ 𝑆𝑟 (0).
Thus for a fixed 𝑥 ∈ 𝑈′ the function 𝑦 ↦→ 𝐹 (𝑥, 𝑦) achieves its minimum on 𝐵̄𝑟 (0) at a
point 𝑔(𝑥) in the interior of 𝐵̄𝑟 (0) and we have

0 = 𝐷𝑦 𝑓 (𝑥, 𝑔(𝑥)) = 2𝐷𝑦 𝑓 (𝑥, 𝑔(𝑥)) 𝑓 (𝑥, 𝑔(𝑥)).

Since 𝐷𝑦 𝑓 (𝑥, 𝑔(𝑥)) is nonsingular, we have 𝑓 (𝑥, 𝑔(𝑥)) = 0 for all 𝑥 ∈ 𝑈′.
Consider now Δ𝑥 ∈ R𝑛 such that 𝑥 +Δ𝑥 ∈ 𝑈′ and define Δ𝑦 = 𝑔(𝑥 +Δ𝑥) −𝑔(𝑥). Then

by the mean value theorem we have

𝐷𝑥 𝑓 (𝑥′, 𝑦′)Δ𝑥 + 𝐷𝑦 𝑓 (𝑥′, 𝑦′)Δ𝑦 = 𝑓 (𝑥 + Δ𝑥, 𝑔(𝑥 + Δ𝑥)) − 𝑓 (𝑥, 𝑔(𝑥)) = 0

for some (𝑥′, 𝑦′) on the line segment between (𝑥, 𝑔(𝑥)) and (𝑥 + Δ𝑥, 𝑔(𝑥 + Δ𝑥)). From
the triangle inequality and the consistency of the matrix norm, this and the invertibility of
𝐷𝑦 𝑓 (𝑥′, 𝑦′) imply that if ∥Δ𝑥∥ → 0, then ∥Δ𝑦∥ → 0. This proves that 𝑔 is a continuous
function. To prove that 𝑔 is 𝐶1, we use Taylor’s formula to get

0 = 𝑓 (𝑥 + Δ𝑥, 𝑔(𝑥 + Δ𝑥)) − 𝑓 (𝑥, 𝑔(𝑥))
= 𝐷𝑥 𝑓 (𝑥, 𝑔(𝑥))Δ𝑥 + 𝐷𝑦 𝑓 (𝑥, 𝑔(𝑥))Δ𝑦 + 𝑜((Δ𝑥,Δ𝑦)).

Since 𝑔 is continuous, we have 𝑜((Δ𝑥,Δ𝑦)) = 𝑜(Δ𝑥), and so

Δ𝑦 = −𝐷𝑦 𝑓 (𝑥, 𝑔(𝑥))−1𝐷𝑥 𝑓 (𝑥, 𝑔(𝑥))Δ𝑥 + 𝑜(Δ𝑥)

This proves that 𝑔 is differentiable at 𝑥 with derivative

𝐷𝑔(𝑥) = −𝐷𝑦 𝑓 (𝑥, 𝑔(𝑥))−1𝐷𝑥 𝑓 (𝑥, 𝑔(𝑥)).

The continuity of 𝐷 𝑓 implies the continuity of 𝐷𝑔. □

Reference. We follow closely T.2.26. in Güler FO p.45 who expands the proof in S.9.-
12. in Carathéodory CV&PDE (1935,1982) p.10-13. This is an elementary proof that
simply uses Taylor’s formula (which includes the mean value theorem for 𝑘 = 1) whose
proof can be found as T.1.1. in Güler FO p.2. For another elementary proof as well
as references on other standard proofs (which generally prove first the inverse function
theorem by resorting to the contracting mapping principle), see "The Implicit and Inverse
Function Theorems: Easy Proofs" by de Oliveira (2013). For reminders on asymptotic
comparisons, see Gourdon’s Analyse S.2.2. p.86.
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Remark. We collect a few definitions needed for the proof of KKT conditions proper.
Consider 𝑓 and 𝑆 as in (P). Define 𝑅𝑆 (𝑥) the set of all feasible directions for 𝑆 at 𝑥 ∈ 𝑆 by

𝑅𝑆 (𝑥) =
{
𝑑 ∈ R𝑛 : ∃ 𝛿 > 0 s.t. 𝑥 + 𝜆𝑑 ∈ 𝑆 for all 𝜆 ∈ [0, 𝛿]

}
,

and 𝑅𝐷 𝑓 (𝑥) the set of all (strict) descent directions of 𝑓 at 𝑥 ∈ R𝑛 by

𝑅𝐷 𝑓 (𝑥) =
{
𝑑 ∈ R𝑛 : ∃ 𝛿 > 0 s.t. 𝑓 (𝑥 + 𝜆𝑑) < 𝑓 (𝑥) for all 𝜆 ∈ (0, 𝛿]

}
.

These sets which are cones, even if very natural, may be mis-behaved (e.g., for a circle
in R2) and we need to consider slightly bigger cones containing them as developed by
Bouligand1. Define then 𝑇𝑆 (𝑥) the (Bouligand) tangent cone of the feasible set 𝑆 at 𝑥 ∈ 𝑆

by

𝑇𝑆 (𝑥) =
{
𝑑 ∈ R𝑛 : ∃ (𝑥𝑛) ∈ 𝑆∞, ∃ (𝜆𝑛) ∈ (0,∞)∞ s.t. 𝑥𝑛 → 𝑥, 𝜆𝑛 (𝑥𝑛 − 𝑥) → 𝑑

}
,

and 𝑇𝐷 𝑓 (𝑥) the set of all (strict) descent directions (in the sense of Bouligand) for 𝑓 at
𝑥 ∈ R𝑛 by

𝑇𝐷 𝑓 (𝑥) =
{
𝑑 ∈ R𝑛 : ∃ (𝑥𝑛) ∈ (R𝑛)∞, ∃ (𝜆𝑛) ∈ (0,∞)∞

s.t. 𝑥𝑛 → 𝑥, 𝜆𝑛 (𝑥𝑛 − 𝑥) → 𝑑, 𝑓 (𝑥𝑛) < 𝑓 (𝑥)
}
.

It holds that: 𝑅𝑆 (𝑥) ⊆ 𝑇𝑆 (𝑥); if 𝑆 is convex and closed, then 𝑅𝑆 (𝑥) = 𝑇𝑆 (𝑥) (see P.5.3.
in Andreasson&Evgrafov&Patriksson ICO and P.2.55. in Bonnans&Shapiro PAOP);
𝑅𝐷 𝑓 (𝑥) ⊆ 𝑇𝐷 𝑓 (𝑥) (see own proof).

Lemma 5 (Geometric (Necessary) Optimality Conditions). If 𝑥∗ is a local minimizer
for (P), then

𝑇𝑆 (𝑥∗) ∩ 𝑇𝐷 𝑓 (𝑥∗) = ∅.

Proof. If the intersection is not empty, then there exists a sequence of feasible points (𝑥𝑛) ∈
𝑆∞ such that 𝑓 (𝑥𝑛) < 𝑓 (𝑥∗), which contradicts the fact that 𝑥∗ is a local minimizer. □

Remark. The result above (see L.9.3. in Güler FO p.210) is not used directly for the proof
but it is the initial result that motivates the geometric route. We will directly prove below a
version for linear approximations of the sets above. In particular, it makes use of the suffi-
cient condition for descent: ∇ 𝑓 𝑇𝑑 < 0 (see P.4.16. in Andreasson&Evgrafov&Patriksson
ICO). We nautrally define the linearized versions of the feasible directions and descent
directions for problem (Q) and the associated cones

𝑇𝐷0
𝑓 (𝑥) = {𝑑 ∈ R𝑛 : ∇ 𝑓 (𝑥)𝑇𝑑 < 0},

and
𝑇0
𝑆 (𝑥) := 𝐺0(𝑥) ∩ 𝐻0(𝑥),

where
𝐺0(𝑥) = {𝑑 ∈ R𝑛 : ∇𝑔𝑖 (𝑥)𝑇𝑑 < 0, 𝑖 ∈ 𝐼 (𝑥)},

1"Comme pour le calcul de la dérivée d’une fonction, la définition des directions tangentes qui sont les
éléments du cône tangent requiert un passage à la limite." (Wikipedia)
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with 𝐼 (𝑥) = {𝑖 ∈ {1, . . . , 𝑟 : 𝑔𝑖 (𝑥) = 0} the index set of active constraints at 𝑥, and

𝐻0(𝑥) = {𝑑 ∈ R𝑛 : ∇ℎ 𝑗 (𝑥)𝑇𝑑 = 0, 𝑗 = 1, . . . , 𝑚}.

Lemma 6 (Linearized Geometric (Necessary) Optimality Conditions). If 𝑥∗ is a local
minimizer for (Q) and the vectors {∇ℎ 𝑗 (𝑥∗)}𝑚𝑗=1 are linearly independent, then

𝐺0(𝑥∗) ∩ 𝐻0(𝑥∗) ∩ 𝑇𝐷0
𝑓 (𝑥

∗) = ∅.

Remark (S.9.1. in Güler FO p.211). If we only had inequality constraints, the result
𝐺0(𝑥∗)∩𝑇𝐷0

𝑓
(𝑥∗) = ∅ could be proved much faster. Indeed, if 𝑑 ∈ {𝑑 ∈ R𝑛 : ∇𝐹 (𝑥)𝑇𝑑 <

0} for some continuously differentiable function 𝐹 : R𝑛 → R, then 𝐹 (𝑥 + 𝑡𝑑) = 𝐹 (𝑥) +
𝑡 [∇𝐹 (𝑥)𝑇𝑑+𝑜(𝑡)/𝑡] < 𝐹 (𝑡) for all 𝑡 > 0 small, since∇𝐹 (𝑥)𝑇𝑑 < 0 and lim𝑡→0 𝑜(𝑡)/𝑡 = 0.
Therefore, if 𝑑 ∈ 𝐺0(𝑥∗) ∩𝑇𝐷0

𝑓
(𝑥∗), then 𝑓 (𝑥∗ + 𝑡𝑑) < 𝑓 (𝑥∗) and 𝑔(𝑥∗ + 𝑡𝑑) < 𝑔(𝑥∗) = 0

for 𝑡 > 0 small, which contradicts that 𝑥∗ is a local minimizer for (Q). The case with
𝐻0(𝑥∗) is more technical; it can be handled by invoking the implicit function theorem.

Proof. The idea of the proof is similar. We show by contradiction that if 𝑑 ∈ 𝐺0(𝑥∗) ∩
𝐻0(𝑥∗) ∩ 𝑇𝐷0

𝑓
(𝑥∗), there is a point 𝑥(𝜃) ∈ 𝑆 such that lim𝜃→0 𝑥(𝜃) = 𝑥∗ and 𝑓 (𝑥(𝜃)) <

𝑓 (𝑥∗) for 𝜃 > 0 small, a contradiction with the fact that 𝑥∗ is a local minimizer for (Q).
Let 𝐴 ∈ R𝑚×𝑛 be the matrix with rows ∇ℎ 𝑗 (𝑥∗)𝑇 . Since 𝐴 has full row rank, its

columns and the corresponding elements of 𝑥∗ can be re-arranged so that 𝐴 = [𝐵 𝑁] and
𝑥∗ = (𝑦∗, 𝑧∗) where 𝐵 is invertible. Then the implicit function theorem guarantees that
there is an open set 𝑈 containing 𝑧∗ such that there is a function 𝑠 such that 𝑠(𝑧∗) = 𝑦∗

and ℎ(𝑠(𝑧), 𝑧) = 0 for all 𝑧 ∈ 𝑈. Suppose now that 𝑑 ∈ 𝐺0(𝑥∗) ∩ 𝐻0(𝑥∗) ∩ 𝑇𝐷0
𝑓
(𝑥∗).

Write 𝑑 = (𝑞, 𝑝). Then 0 = 𝐴𝑑 = 𝐵𝑞 + 𝑁𝑝, so that 𝑞 = −𝐵−1𝑁𝑝. Let 𝑧(𝜃) = 𝑧∗ + 𝜃𝑝 and
𝑦(𝜃) = 𝑠(𝑧(𝜃)) = 𝑠(𝑧∗ + 𝜃𝑝). Define 𝑥(𝜃) = (𝑦(𝜃), 𝑧(𝜃)).

We first show that 𝑥(𝜃) ∈ 𝑆. For 𝜃 > 0 sufficiently small, the implicit function
theorem directly yields that ℎ(𝑥(𝜃)) = ℎ(𝑠(𝑧(𝜃)), 𝑧(𝜃)) = 0. Moreover, by differentiating
with respect to 𝜃, we get using the chain rule that for all 𝑗 = 1, . . . , 𝑚,

0 =

𝑚∑︁
𝑘=1

𝜕ℎ 𝑗 (𝑠(𝑧(𝜃)), 𝑧(𝜃))
𝜕𝑦𝑘

𝜕𝑠𝑘 (𝑧(𝜃))
𝜕𝜃

+
𝑛−𝑚∑︁
𝑘=1

𝜕ℎ 𝑗 (𝑠(𝑧(𝜃)), 𝑧(𝜃))
𝜕𝑧𝑘

𝜕𝑧𝑘 (𝑧(𝜃))
𝜕𝜃

.

Denote 𝑟𝑘 =
𝜕𝑠𝑘 (𝑧 (𝜃 ) )

𝜕𝜃
and notice that 𝑝𝑘 =

𝜕𝑧𝑘 (𝑧 (𝜃 ) )
𝜕𝜃

. At 𝜃 = 0, this system rewrites as
0 = 𝐵𝑟 + 𝑁𝑝, so that 𝑟 = −𝐵−1𝑁𝑝 = 𝑞. Then 𝜕𝑥𝑘 (𝜃 )

𝜕𝜃
= 𝑑𝑘 for 𝑘 = 1, . . . , 𝑛. Now, for all

𝑖 ∈ 𝐼 (𝑥∗),

𝑔𝑖 (𝑥(𝜃)) = 𝑔𝑖 (𝑥∗) + 𝜃
𝜕𝑔𝑖 (𝑥(𝜃))

𝜕𝜃

����
𝜃=0

+ 𝑜(𝜃)

= 0 + 𝜃

𝑛∑︁
𝑘=1

𝜕𝑔𝑖 (𝑥(𝜃))
𝜕𝑥𝑘

𝑓 𝑟𝑎𝑐𝜕𝑥𝑘 (𝜃)𝜕𝜃
����
𝜃=0

+ 𝑜(𝜃)

= 𝜃∇𝑔𝑖 (𝑥∗)𝑇𝑑 + 𝑜(𝜃).

Hence, 𝑔𝑖 (𝑥(𝜃)) < 0 for all 𝑖 = 1, . . . , 𝑟 for 𝜃 > 0 small enough. It follows that 𝑥(𝜃) ∈ 𝑆

for 𝜃 > 0 small enough. Moreover, 𝑥(0) = 𝑥∗ and so by continuity of 𝑠, lim𝜃→0 𝑥(𝜃) = 𝑥∗.
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We finally prove that 𝑥(𝜃) improves on 𝑥∗. We have for the same reason that

𝑓 (𝑥(𝜃)) = 𝑓 (𝑥∗) + 𝜃∇ 𝑓 (𝑥∗)𝑇𝑑 + 𝑜(𝜃) < 𝑓 (𝑥∗)

for 𝜃 > 0 small enough. This contradicts the local optimality of 𝑥∗. □

Reference. This is the difficult part in the derivation of the KKT conditions. We follow
closely the proof of Freund for T.2.1. p.28 in his lecture notes for 15.084J at MIT. The
same result and alternative proofs can be found in T.9.4. in Güler FO p.211 or T.5.2.1. in
Bazaraa&Shetty p.122.

Lemma 7 (Fritz John (Necessary) Conditions). If 𝑥∗ is a local minimizer of (Q), then
there exists (𝜆0, 𝜆, 𝜇) ∈ R × R𝑟 × R𝑚 such that

𝜆0∇ 𝑓 (𝑥∗) +
𝑟∑︁
𝑖=1

𝜆𝑖∇𝑔𝑖 (𝑥∗) +
𝑚∑︁
𝑗=1

𝜇 𝑗∇ℎ 𝑗 (𝑥∗) = 0,

and

(𝜆0, 𝜆) ≥ 0, (𝜆0, 𝜆, 𝜇) ≠ 0, and 𝜆𝑖𝑔𝑖 (𝑥∗) = 0 for all 𝑖 = 1, . . . , 𝑟 .

Proof. If the vectors {∇ℎ 𝑗 (𝑥∗)}𝑚𝑗=1 are linearly dependent, then there exist 𝜇 ≠ 0 such
that

∑𝑚
𝑗=1 𝜇 𝑗∇ℎ(𝑥∗) = 0. Set (𝜆0, 𝜆) = 0 gives the result.

Suppose now that {∇ℎ 𝑗 (𝑥∗)}𝑚𝑗=1 are linearly independent, then 𝐺0(𝑥∗) ∩ 𝐻0(𝑥∗) ∩
𝑇𝐷0

𝑓
(𝑥∗) = ∅. Without loss of generality, assume 𝐼 (𝑥∗) = {1, . . . , 𝑝}. Define 𝐴 ∈

R(𝑝+1)×𝑛 the matrix with rows ∇ 𝑓 (𝑥∗)𝑇 and ∇𝑔𝑖 (𝑥∗)𝑇 for 𝑖 = 1, . . . , 𝑝 and 𝐻 ∈ R𝑚×𝑛

the matrix with rows ∇ℎ 𝑗 (𝑥∗)𝑇 for 𝑗 = 1, . . . , 𝑚. The the empty intersection proposition
implies that there is no 𝑑 ∈ R𝑛 such that 𝐴𝑑 < 0 and 𝐻𝑑 = 0. From Motzkin’s lemma,
there thus exists (𝜆0, 𝜆1, . . . , 𝜆𝑝) and (𝜇1, . . . , 𝜇𝑚) such that

𝜆0∇ 𝑓 (𝑥∗) +
𝑝∑︁
𝑖=1

𝜆𝑖∇𝑔𝑖 (𝑥∗) +
𝑚∑︁
𝑗=1

𝜇 𝑗∇ℎ 𝑗 (𝑥∗) = 0,

with
∑𝑝

𝑖=0 𝜆𝑖 = 1 and (𝜆0, 𝜆1, . . . , 𝜆𝑝) ≥ 0. Define (𝜆𝑝+1, . . . , 𝜆𝑟 ) = 0. Then (𝜆0, 𝜆) ≥ 0,
(𝜆0, 𝜆, 𝜇) ≠ 0, and by definition either 𝑔𝑖 (𝑥∗) or 𝜆𝑖 = 0 for any 𝑖 = 1, . . . , 𝑟 . Moreover,

𝜆0∇ 𝑓 (𝑥∗) +
𝑟∑︁
𝑖=1

𝜆𝑖∇𝑔𝑖 (𝑥∗) +
𝑚∑︁
𝑗=1

𝜇 𝑗∇ℎ 𝑗 (𝑥∗) = 0,

which concludes the proof. □
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