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We extend statistical minimax theorems for the average risk by providing general conditions
under which maximin priors exist and are saddle points. We show that these conditions apply not
only when the parameter space is compact, but also under the weaker condition that the priors
have bounded moments. We illustrate the practicality of these conditions in the normal mean
problem and the sparse normal mean problem where we readily recover known existence results
and derive new ones. We then cast doubt on the possibility of extending Huber’s approach to
derive new existence results in minimax games for the average risk without any boundedness
conditions on the parameter or the priors. We illustrate this issue in the normal mean problem
and the sparse normal mean problem when the parameter space is the whole real line. As a
corollary of independent interest, we show that Brown’s identity does not hold for subprobability
measures on the reals. This corrects a number of results available in Johnstone (2019). We
finally show that existence results obtained in Bickel (1983) and Bickel and Collins (1983) when
the parameter space is the extended real line [−∞, +∞] is not equivalent to Huber’s approach
and impose much stronger bounds on the parameter than may appear at first. As a consequence,
we call for caution when working with maximin priors for the average risk in absence of explicit
bounds on the parameter space or on the priors’ moments.

1 Introduction

1.1 Roadmap

Statistical minimax theorems guarantee under general conditions that the max-min inequality for
the average risk obtained under minimizing decision rules and maximizing priors is an equality. This
is a fundamental first step for evaluating the minimax properties of statistical procedures. Statistical
minimax theorems were obtained in the 1940s and 1950s, notably under the influence of Wald and
then Le Cam. The contribution of Le Cam was to extend the results of Wald to infinite parameter
spaces by finding a satisfactory topology on decision rules so as to apply Kneser’s minimax theorem.
For these general results to hold, no topological conditions need to be imposed on the set of priors.
As a consequence, the existence of maximin priors is generally not guaranteed. However, both from a
theoretical viewpoint and from a computational viewpoint, it is of great interest to ensure that maximin
priors exist. From a theoretical viewpoint, the existence of maximin priors completes the bridge built
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between frequentists and Bayesians by statistical minimax theorems. It ensures, moreover, that
maximin priors can be used for further theoretical constructions. From a computational viewpoint,
the existence of maximin priors allows one to recover minimax rules by first computing a maximin
prior and evaluating the Bayes rule for this distribution. Since this is often the only way to compute
minimax rules, the existence of maximin priors is a problem of high practical relevance.

If we want maximin priors to exist, it is natural to start by endowing the set of priors with the
weak topology. In Section 2, we provide general conditions for maximin priors to exist in this setting.
The general existence result we obtain unifies a number of classical results scattered in the literature:
it provides the weakest conditions for applying Kneser’s minimax theorem and generalizations of the
extreme value theorem. Interestingly, we show that these conditions still yield a saddle point property
in full generality. Moreover, we provide general conditions under which the Bayes rule in the saddle
point can be taken to be deterministic. We then show in Section 2.2 that these conditions obtain in
a number of important cases. Beyond the natural applications when the parameter lies in a compact
metric space, we show that it is possible to relax compactness if the priors’ moments are bounded.
This formalizes a tightening procedure first considered in Feldman (1991) and expanded in Donoho
and Johnstone (1994). Because the bounded moments assumption on the priors is weaker than the
compactness assumption on the parameter space1, we advocate for its use in applications. In Section
2.3, we illustrate the practicality of the conditions we obtained by applying them to the normal mean
problem and the sparse normal mean problem where we recover known existence results and derive
new ones.

It is tempting to enlarge these results by considering a coarser topology on the set of priors so as to
get compactness (and hence the existence of maximin priors) without any boundedness conditions on
the parameter space or on the moments of the priors. The vague topology is a natural candidate that
has been considered in the literature – see, e.g., Johnstone (2019) – following the seminal contributions
of Huber in Huber (1964) for the minimization of the Fisher information. Indeed, under separability
and local compactness of the parameter set, compactness directly obtains by considering the closure
of the set of priors in the set of subprobability measures endowed with the vague topology2. While it
is possible to derive a general existence result under this topology (as done in Appendix B), we show
in Section 3 that the conditions for existence are rarely satisfied in practice. This is the manifestation
of an implicit tension between (proper) subprobability measures and semicontinuity of the Bayes
risk function – a tension that is absent in the minimization of the Fisher information as considered
in Huber (1964). We illustrate this issue in the normal mean problem and the sparse normal mean
problem when the parameter space is the whole real line. For these problems, we show that the
Bayes risk fails to be vaguely upper semicontinuous, which prevents the application of compactness
arguments to prove the existence of maximin priors. In the course of these illustrations, we obtain as

1The parameter space is the sample space of the prior. Compactness of the parameter space then implies that all
moments of the priors are finite.

2Provided the Bayes risk is vaguely upper semicontinuous, the existence of maximin subprobability measures is
guaranteed (see Appendix B). Then to prove the existence of maximin priors, one has to show that the maximin subprobability
measures are probability measures.
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a corollary of independent interest that Brown’s identity does not hold for subprobability measures
on the whole real line. This corrects a number of results available in Johnstone (2019).

These negative outcomes invite us to revisit existence results that were positively derived in the
literature for the sparse normal mean problem when the parameter space is the extended real line
[−∞, +∞] – see Bickel (1983) and Bickel and Collins (1983). While these results suggest that
boundedness assumptions can be relaxed at no cost, we show, however, that the use of the two-
point compactification of the real line impose much stronger bounds on the parameter space than
may appear at first. We prove that this construction is, contrarily to what has been claimed, not
equivalent to the one used by Huber in Huber (1964) based on the one-point compactification of the
real line. To make this clear, we exhibit the topological imports of both compactifications, recover
the construction of Huber (1964), and show that the existence results in Bickel (1983) and Bickel and
Collins (1983) for the sparse normal mean problem are actually obtained as if the parameter space was
[−𝜋/2, 𝜋/2]. We actually show that the bounds −𝜋/2 and 𝜋/2 are arbitrary and depend ultimately on
the homeomorphism considered by the modeler when defining [−∞,∞]. As a consequence, we call
for caution when working with maximin priors for the average risk whenever neither the parameter
space nor the priors’ moments are explicitly bounded by some known and interpretable constants
𝑚 > 0 or 𝑀 ∈ R. We also suggest to reconsider as an open problem the existence of a maximin prior
in the sparse normal mean problem when the parameter space is the whole real line3.

It is important to note that our results do not exhaust the question of whether maximin priors
exist. Their main raison d’être is to guide and discipline the use of general tools to non-constructively
prove existence. In particular, our negative results for the use of the vague topology do not prove
that maximin priors do not exist, but only that standard arguments based on semicontinuity and
compactness using variations of the extreme value theorem generally fail to deliver positive results in
this case. Moreover, our results should not be viewed as saying that the vague topology cannot be used
to prove existence in minimax problems involving probability measures: the vague topology has been
used profitably in other minimax problems (as by Huber when minimizing the Fisher information); if
it cannot deliver existence in the statistical games we consider, it is only due to the inherent properties
of the Bayes risk. It is finally of interest to note that there likely exist workarounds for the negative
results we obtained. In particular, if one has no issue with pure subprobability measures as priors,
then there are two promising directions to obtain encompassing existence results: either using the
𝑞-vague topology as developed in Bioche and Druilhet (2016) or redefining the Bayes risk for pure
subprobability measures. The second approach is briefly explored in Section 3.4, but a thorough
treatment of the problem is left for future research.

1.2 Related literature

The notion of minimax in decision theory has a long history, starting at least with the early
contributions of Borel and von Neumann in the 1920s – see Fréchet (1953).

3Numerical simulations, especially when compared with the normal mean problem where non-existence is known, leads
us to conjecture that such a prior does not exist.
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The use of minimax considerations for the determination and evaluation of statistical rules was
initiated by Wald in the 1940s – see his textbook treatment in Wald (1950). His approach based on
the average risk was rapidly extended by Blyth, Ghosh, Hodges, Kiefer, Lehmann, Le Cam, Stein,
Wolfowitz, among others – see, for instance, Hodges and Lehmann (1950) and Lehmann (1952).
An important generalization for our purpose was obtained by Le Cam in Le Cam (1955) with the
first derivation of statistical minimax theorems for the average risk holding under general conditions.
The general treatment of Wald and Le Cam rapidly crystallized in stable forms that can be found in
textbooks – see, e.g., Ferguson (1967), Brown (1974), Berger (1985), Strasser (1985), and Le Cam
(1986).

As far as we know, the existence of maximin priors was never considered in full generality in the
context of these theorems. It was, however, tackled in the many applications of these results to specific
problems. Due to the inherent difficulty of double optimization in minimax problems, the literature
has had a tendency to focus on simple models. Among them, the normal mean problem has received
a lot of attention, owing in particular to approximation results connecting it asymptotically to much
more complicated models. The version with restricted parameter space became a popular research
topic in the 1980s as it was (re)discovered, long after Ghosh (1964), that bounds on the parameter
space altered minimax results drastically, from non-existence of maximin priors to the existence of
finitely supported ones: see Casella and Strawderman (1981), Bickel (1981), Levit (1981), Zinzius
(1981); see Marchand and Strawderman (2004) for a review. A second wave of results were obtained
for more complicated versions of normal mean estimation, either due to more elaborate parameter sets
as in Donoho, Liu, and MacGibbon (1990), Donoho and Johnstone (1994), Donoho and Johnstone
(1996), Donoho and Johnstone (1998), or due to the presence of performance constraints or prior
information as in Bickel (1983), Bickel and Collins (1983), Feldman (1991), Donoho and Johnstone
(1994), Johnstone (1994). A textbook treatment of these different results can be found in Johnstone
(2019).

In these problems, the existence of maximin priors has been mostly motivated by computational
considerations. Indeed, in problems for which Bayes rules and maximin priors exist, it is often
possible to numerically compute minimax rules and their minimax risk by first computing maximin
priors and then evaluating the associated Bayes rules. This procedure is of great importance, since it
is often the only one available to compute minimax rules. For an illustration of this procedure, see
Nelson (1966), Casella and Strawderman (1981), Kempthorne (1987), Eichenauer and Lehn (1989),
Gourdin, Jaumard, and MacGibbon (1994), Johnstone (1994), Chamberlain (2000), and Noubiap and
Seidel (2001).

Interest in the existence of maximin priors of the nature considered in this paper has been recently
revived in a number of fields, not the least in econometrics and in optimization. Such maximin priors
have appeared both in the construction of theoretical solutions for uniform inference as well as in
the computation of minimax rules in applied decision-making settings. Examples in econometrics
include Elliott, Müller, and Watson (2015), Müller and Wang (2019), or Kline and Walters (2021). In
the optimization literature, these maximin priors have gained prominence due notably to an increased
interest in distributionally robust solutions. This interest has been fueled by recent advances in
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computational optimal transport, in particular for the computation of maximin priors in Wasserstein
balls. See, for instance, Mohajerin Esfahani and Kuhn (2018), Shafieezadeh Abadeh, Nguyen,
Kuhn, and Mohajerin Esfahani (2018), Blanchet and Murthy (2019), or Gao and Kleywegt (2023).
The results in our paper are here to assist these recent developments by providing easily verifiable
conditions for existence while calling for caution when trying to relax too abruptly boundedness
conditions on the priors.

1.3 Definitions

We collect here a number of definitions that will be used repeatedly in the paper. Other notations,
definitions, and results that appear in the paper can be found in Appendix A.

A statistical experiment is a pair ((X ,BX ), {𝑃𝜃 : 𝜃 ∈ Θ}) where (X ,BX ) is a measurable space
and {𝑃𝜃 : 𝜃 ∈ Θ} is a set of probability measures on (X ,BX ) indexed by a set Θ.

A statistical decision problem is a quadruple ((X ,BX ), {𝑃𝜃 : 𝜃 ∈ Θ}, (A,BA), 𝐿) where
((X ,BX ), {𝑃𝜃 : 𝜃 ∈ Θ}) is a statistical experiment, (A,BA) is a measurable space called action
space, and 𝐿 : A × Θ → [0,∞] is a loss function.

A decision rule for the statistical experiment is a Markov kernel from (X ,BX ) to (A,BA). The
set of all decision rules for a given decision problem is denoted D. If for every 𝑥 ∈ X , the decision
rule 𝛿 is the Dirac measure at𝑇 (𝑥) for some measurable function𝑇 : X → A, then the decision rule is
said to be non-randomized or deterministic. In this case, the decision rule is often directly considered
to be the function 𝑇 . When A is a convex subset of a Euclidean space, a non-randomized rule can be
obtained from a randomized one by averaging over A, that is, by taking 𝑇𝛿 (𝑥) =

∫
A 𝑎𝑑𝛿(𝑥, 𝑎).

We assume that X , A, and Θ are topological spaces. We assume that BA is the Baire 𝜎-algebra
for A. We endow Θ with its Borel 𝜎-algebra which we denote BΘ.

Given a statistical decision problem, we define the risk function 𝑟 : D × Θ → [0, +∞] by

𝑟 (𝛿, 𝜃) :=
∫
X

∫
A
𝐿 (𝑎, 𝜃) 𝑑𝛿(𝑥, 𝑎) 𝑑𝑃𝜃 (𝑥).

If the decision rule is a non-randomized rule 𝛿𝑇 inducing a measurable function 𝑇 , then

𝑟 (𝑇, 𝜃) := 𝑟 (𝛿𝑇 , 𝜃) =
∫
X
𝐿 (𝑇 (𝑥), 𝜃) 𝑑𝑃𝜃 (𝑥) = E 𝑥∼𝑃𝜃

[𝐿 (𝑇 (𝑥), 𝜃)] .

Given a setP of probability measures on (Θ,BΘ) called priors, we define the average risk or integrated
risk 𝐵 : D × P → [0, +∞] by

𝐵(𝛿, 𝜋) :=
∫
Θ

𝑟 (𝛿, 𝜃) 𝑑𝜋(𝜃) = E 𝜃∼𝜋 [𝑟 (𝛿, 𝜃)] .

The Bayes(ian) risk over D0 ⊆ D is then defined as the function 𝐵 : P → [0, +∞] given by

𝐵(𝜋) := inf
𝛿∈D0

𝐵(𝛿, 𝜋) = inf
𝛿∈D0

∫
Θ

𝑟 (𝛿, 𝜃) 𝑑𝜋(𝜃).
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We sometimes allow priors to be subprobability measures and so define the average risk and Bayesian
risk over setsP ⊆ M≤1(Θ) in a natural way by integrating in the Lebesgue sense over finite measures.
The integral expressions and notations in this case remain unchanged.

A maximin prior or least favorable prior is a measure 𝜋0 ∈ P such that

𝐵(𝜋0) = sup
𝜋∈P

𝐵(𝜋) = sup
𝜋∈P

inf
𝛿∈D0

𝐵(𝛿, 𝜋),

and 𝐵(P) := 𝐵(𝜋0) is then said to be the maximum Bayesian risk.
A Bayes(ian) rule with respect to a prior 𝜋 ∈ P is any rule 𝛿𝑏 ∈ D0 such that

𝐵(𝛿𝑏, 𝜋) = 𝐵(𝜋) = inf
𝛿∈D0

𝐵(𝛿, 𝜋).

A minimax rule (for the risk) is any rule 𝛿𝑚 ∈ D0 such that

sup
𝜃∈Θ

𝑟 (𝛿𝑚, 𝜃) = inf
𝛿∈D0

sup
𝜃∈Θ

𝑟 (𝛿, 𝜃),

and 𝑅𝑁 (Θ) := inf 𝛿∈D0 sup𝜃∈Θ 𝑟 (𝛿, 𝜃) is then said to be the minimax risk (over D0). Note that
minimaxity for the risk is a frequentist notion (as there is no mention of priors).

1.4 Regular statistical decision problems

We review here the notion of regular statistical decision problems as well as topological consider-
ations on the set of decision rules that were initiated by Le Cam (1955) to derive statistical minimax
theorems. These results will be used in later sections. We follow the construction of Brown (1974),
which is partially reproduced in Johnstone (2019).

Definition 1 (Regular Statistical Decision Problem). A statistical decision problem ((X ,BX ), {𝑃𝜃 :
𝜃 ∈ Θ}, (A,BA), 𝐿) is said to be regular if:

1. the action space A is a compact metric space (and hence also second-countable);
2. the family of probability measures {𝑃𝜃 : 𝜃 ∈ Θ} is dominated by a 𝜎-finite measure 𝑃0 such

that the space 𝐿1(X , 𝑃0) is a separable Banach space.

Lemma 1.1. Let ((X ,BX ), {𝑃𝜃 : 𝜃 ∈ Θ}, (A,BA), 𝐿) be a regular statistical experiment. Then
there is a vector topological space such that the set D of all decision rules for the statistical decision
problem is a compact and convex subset of this space.

Proof. The proof follows directly from Theorem 42.3 and Corollary 42.8 in Strasser (1985). The
result Theorem 42.3 can be traced back to Le Cam (1955) and the result leading to Corollary 42.8
from Farrell (1966). For our purpose, we will use the construction of Theorem 3.9 in Brown (1974)
(p.219) where a direct imbedding is worked out for the dominated case. The proof of Brown is
partially reproduced p.405 in Johnstone (2019). □

Remark 1.1. A topology satisfying Lemma 1.1 can be constructed in two ways. Le Cam and Strasser
identify D and a subset of 𝐶𝑏 (A) × 𝐿 (X ) where 𝐿 (X ) is some space of finite measures called
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𝐿-space. In the dominated case, Brown identifies D and a subset of 𝐶 (A) × 𝐿1(X , 𝑃0) through the
imbedding 𝛿 ↦→ 𝑏 𝛿 where

𝑏 𝛿 (𝑐, 𝑔) :=
∫ ∫

𝑐(𝑎)𝑔(𝑥) 𝑑𝛿(𝑥, 𝑎) 𝑑𝑃0(𝑥).

The set D inherits both a topology and a linear structure from the bĳection 𝛿 ↦→ 𝑏 𝛿 . It is important
to note that there is no assumption on the loss 𝐿 for this result to hold, in particular 𝐿 need not be
in 𝐶 (A) nor 𝐶𝑏 (A) for the imbedding to be valid. In the rest of the paper, we will use the topology
constructed above and call it, as typically done, the weak topology on D.

Lemma 1.2. Let ((X ,BX ), {𝑃𝜃 : 𝜃 ∈ Θ}, (A,BA), 𝐿) be a regular statistical experiment. Let P be
a set of probability measures on (Θ,BΘ). Let D0 ⊆ D be a set of decision rules where D is endowed
with the weak topology. If the loss function 𝐿 is lower semicontinuous in 𝑎 for each 𝜃 ∈ Θ, then the
integrated risk is lower semicontinuous in 𝛿 for each 𝜋 ∈ P .

Proof. Corollary 11 in Brown (1974) (p.221) yields lower semicontinuity of the risk function. Then
an application of Fatou’s lemma concludes the proof (see Lemma A.3). See also p.405 in Johnstone
(2019). The construction is identical to Theorem 43.2 in Strasser (1985). □

Remark 1.2. In the course of the proof of the previous result, a useful characterization of the risk is
obtained. We reproduce it and the argument justifying it as it will be used in our existence results.
Since A is second-countable and the loss function 𝐿 is lower semicontinuous in 𝑎, it follows that, for
a fixed 𝜃, the loss 𝐿 can be expressed as the limit of an increasing sequence of continuous functions
of 𝑎. It thus follows that

𝑟 (𝛿, 𝜃) = sup
𝑐∈𝐶 (A)

{𝑏 𝛿 (𝑐, 𝑓𝜃 ) : 𝑐 ≤ 𝐿 (𝑎, 𝜃)}.

2 Existence of maximin priors under the weak topology

2.1 An existence result under the weak topology

We are now ready to state and prove a general existence result under the weak topology. The first
part of the result, which yields a statistical minimax theorem for the average risk, is already known
(modulo some small variations) – see, e.g., Theorem 1 in Le Cam (1986) (p.16) and the subsequent
remarks; see also Theorem A.5 in Johnstone (2019) for a particular application. The second part,
which proves the existence of a maximin prior, has, as far as we know, no counterpart in the existing
literature, but proceeds by very standard arguments. The merit of the result is to gather assumptions
as general as possible. The difficult part of verifying these assumptions in common applications is
relegated to Section 2.2.

Proposition 2.1. Let ((X ,BX ), {𝑃𝜃 : 𝜃 ∈ Θ}, (A,BA), 𝐿) be a regular statistical decision problem.
Let D0 ⊆ D be a set of decision rules for the statistical decision problem. Let P be a set of probability
measures on (Θ,BΘ). Suppose that
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1. for each 𝜃, the loss 𝐿 is lower semicontinuous in 𝑎;
2. the Bayes risk function 𝜋 ↦→ inf 𝛿∈D0 𝐵(𝛿, 𝜋) is weakly upper semicontinuous;
3. the set P is weakly compact and convex;
4. the set D0 is closed and convex as a subset of D endowed with the weak topology.

Then there exists a pair (𝛿∗, 𝜋∗) ∈ D0 × P such that

𝐵(𝛿∗, 𝜋∗) = inf
𝛿∈D0

sup
𝜋∈P

𝐵(𝛿, 𝜋) = sup
𝜋∈P

inf
𝛿∈D0

𝐵(𝛿, 𝜋). (2.1.1)

and that (𝛿∗, 𝜋∗) is a saddle point in the sense that

𝐵(𝛿∗, 𝜋) ≤ 𝐵(𝛿∗, 𝜋∗) ≤ 𝐵(𝛿, 𝜋∗) (2.1.2)

for all 𝛿 ∈ D0 and all 𝜋 ∈ P .

Proof. By linearity of the space of finite measures, the integrated risk 𝐵 is linear in 𝜋 for each 𝛿 ∈ D0.
Moreover, from Remark 1.2, we have

𝑟 (𝛿, 𝜃) = sup
𝑐∈𝐶 (A)

{𝑏 𝛿 (𝑐, 𝑓𝜃 ) : 𝑐 ≤ 𝐿 (𝑎, 𝜃)},

hence 𝑟 is convex in 𝛿 for each 𝜃 ∈ Θ, and so the integrated risk 𝐵 is convex in 𝛿 for each 𝜃 ∈ Θ. By
assumption, P is convex and D0 is convex and closed. By Lemma 1.1, D is compact and so D0 is
compact. It thus follows from Kneser’s minimax theorem (see Kuhn (1953)) that

inf
𝛿∈D0

sup
𝜋∈P

𝐵(𝛿, 𝜋) = sup
𝜋∈P

inf
𝛿∈D0

𝐵(𝛿, 𝜋).

By assumption, P is weakly compact and 𝜋 ↦→ inf 𝛿 𝐵(𝛿, 𝜋) is weakly upper semicontinuous, hence
the supremum on the right-hand side is attained. Denote 𝜋∗ ∈ P the distribution that attains this
supremum, that is,

sup
𝜋∈P

inf
𝛿∈D0

𝐵(𝛿, 𝜋) = inf
𝛿∈D0

𝐵(𝛿, 𝜋∗)

By Lemma 1.2, 𝛿 ↦→ 𝐵(𝛿, 𝜋) is lower semicontinuous for each 𝜋 ∈ P , and in particular for 𝜋∗ ∈ P .
Since D0 is compact, the infimum on the right-hand side is also attained for some 𝛿′ ∈ D0. Therefore,
there exists a pair (𝛿′, 𝜋∗) ∈ D0 × P such that

𝐵(𝛿′, 𝜋∗) = inf
𝛿∈D0

sup
𝜋∈P

𝐵(𝛿, 𝜋) = sup
𝜋∈P

inf
𝛿∈D0

𝐵(𝛿, 𝜋).

We now show that there exists a rule 𝛿∗ ∈ D0 such that (𝛿∗, 𝜋∗) attains the minimax equality and
is a saddle point. Since 𝛿 ↦→ 𝐵(𝛿, 𝜋) is lower semicontinuous for each 𝜋 ∈ P , we have that
𝛿 ↦→ sup𝜋 𝐵(𝛿, 𝜋) is lower semicontinuous as the pointwise supremum of lower semicontinuous
functions. Since D0 is compact, the infimum on the left-hand side of the minimax equality is attained.
We thus have

sup
𝜋∈P

𝐵(𝛿∗, 𝜋) = 𝐵(𝛿′, 𝜋∗)
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for some 𝛿∗ ∈ D0. Then 𝐵(𝛿′, 𝜋∗) ≥ 𝐵(𝛿∗, 𝜋∗) ≥ inf 𝛿 𝐵(𝛿, 𝜋∗) = 𝐵(𝛿′, 𝜋∗), and so the supremum on
the left-hand side is also achieved for 𝜋∗. It follows that

𝐵(𝛿∗, 𝜋∗) = 𝐵(𝛿′, 𝜋∗) = sup
𝜋∈P

𝐵(𝛿∗, 𝜋) = inf
𝛿∈D0

𝐵(𝛿, 𝜋∗).

This concludes the proof. □

Remark 2.1. The saddle point characterization (2.1.2) rewrites as

𝐵(𝛿∗, 𝜋∗) = inf
𝛿∈D0

𝐵(𝛿, 𝜋∗) = sup
𝜋∈P

𝐵(𝛿∗, 𝜋). (2.1.3)

Being a saddle point is sufficient for 𝛿∗ to be a Bayes rule for 𝜋∗ (from the first equality, by definition)
and for 𝜋∗ to be a maximin prior (by combining the two equalities, since the first guarantees that
𝐵(𝛿∗, 𝜋∗) = 𝐵(𝜋∗) and the second that 𝐵(𝜋∗) ≥ 𝐵(𝛿∗, 𝜋) for all 𝜋 ∈ P , and so that 𝐵(𝜋∗) ≥
inf 𝛿∈D0 𝐵(𝛿, 𝜋) = 𝐵(𝜋) for all 𝜋 ∈ P). Note that the fact that 𝜋∗ is a maximin prior also follows from
the minimax equality (2.1.1) and first equality of the saddle point formula (2.1.3).

Remark 2.2. The assumptions of Proposition 2.1 guarantee that the minimax equality (2.1.1) holds
and is always attained for some pair of decision rule and prior. Given an arbitrary solution (𝛿′, 𝜋′)
for (2.1.1), the proof of Proposition 2.1 shows that 𝜋′ is always a maximin distribution and that 𝛿′ is
always a Bayes rule for 𝜋′. On the other hand, (𝛿′, 𝜋′) need not be a saddle point, since the left-hand
side inequality in (2.1.2 ) (or, equivalently, the second equality in (2.1.3)) need not hold. However, if
the Bayes rule 𝛿′ for 𝜋′ is unique, then the solution (𝛿′, 𝜋′) is necessarily a saddle point.

We now provide general conditions for the Bayes rule in the saddle point to be deterministic. The
deterministic nature of the rule has important consequences in practice.

Corollary 2.2. Suppose that:
1. A is a convex subset of a (possibly compactified) Euclidean space;
2. the loss function is convex in 𝑎 for each 𝜃 ∈ Θ;

then for any rule 𝛿 ∈ D, there exist a deterministic rule 𝑇𝛿 ∈ D such that

𝐵(𝑇𝛿 , 𝜋) ≤ 𝐵(𝛿, 𝜋) (2.1.4)

for all 𝜋 ∈ P . If, moreover, the assumptions of Proposition 2.1 hold and D0 = D, then the rule 𝛿∗ in
Proposition 2.1 can be taken to be deterministic, and (2.1.1) and (2.1.2) hold both for D and for the
restriction of D to the set D𝑑 of deterministic rules.

Proof. Define𝑇𝛿 (𝑥) =
∫
A 𝑎𝑑𝛿(𝑥, 𝑎), which is a measurable function from 𝑋 to A since A is assumed

convex. By convexity of 𝐿 in 𝑎, we have by Jensen’s inequality that

𝐿 (𝑇𝛿 (𝑥), 𝜃) = 𝐿
( ∫

𝑎𝑑𝛿(𝑥, 𝑎), 𝜃
)
≤
∫

𝐿 (𝑎, 𝜃) 𝑑𝛿(𝑥, 𝑎).
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Integrating over 𝑃𝜃 yields by monotonicity of the integral that for all 𝜃 ∈ Θ

𝑟 (𝑇𝛿 , 𝜃) ≤ 𝑟 (𝛿, 𝜃).

Integrating over arbitrary 𝜋 ∈ P yields

𝐵(𝑇𝛿 , 𝜋) ≤ 𝐵(𝛿, 𝜋) (2.1.5)

and taking the supremum over P yield

sup
𝜋∈P

𝐵(𝑇𝛿 , 𝜋) ≤ sup
𝜋∈P

𝐵(𝛿, 𝜋). (2.1.6)

Let us denote (𝛿∗, 𝜋∗) the solution in Proposition 2.1. Then

𝐵(𝑇𝛿∗ , 𝜋∗) ≤ 𝐵(𝛿∗, 𝜋∗)

= inf
𝛿∈D0

𝐵(𝛿, 𝜋∗)

≤ 𝐵(𝑇𝛿∗ , 𝜋∗).

It follows that
𝐵(𝑇𝛿∗ , 𝜋∗) = inf

𝛿∈D0
sup
𝜋∈P

𝐵(𝛿, 𝜋) = sup
𝜋∈P

inf
𝛿∈D0

𝐵(𝛿, 𝜋).

We now prove that the minimax equality holds when restricting D to D𝑑 and that it is also equal to
𝐵(𝑇𝛿∗ , 𝜋∗). We have from (2.1.6) that

sup
𝜋∈P

𝐵(𝑇𝛿′ , 𝜋) ≤ inf
𝛿∈D

sup
𝜋∈P

𝐵(𝛿, 𝜋)

for any rule 𝛿′, and so
inf
𝑇∈D𝑑

sup
𝜋∈P

𝐵(𝑇, 𝜋) ≤ inf
𝛿∈D

sup
𝜋∈P

𝐵(𝛿, 𝜋)

From the inclusion D𝑑 ⊆ D, we have that

sup
𝜋∈P

inf
𝛿∈D

𝐵(𝛿, 𝜋) ≤ sup
𝜋∈P

inf
𝑇∈D𝑑

𝐵(𝑇, 𝜋).

From the minimax inequality, we have that

sup
𝜋∈P

inf
𝑇∈D𝑑

𝐵(𝑇, 𝜋) ≤ inf
𝑇∈D𝑑

sup
𝜋∈P

𝐵(𝑇, 𝜋).

Combining everything, we can conclude that

𝐵(𝑇𝛿∗ , 𝜋∗) = inf
𝑇∈D𝑑

sup
𝜋∈P

𝐵(𝑇, 𝜋) = sup
𝜋∈P

inf
𝑇∈D𝑑

𝐵(𝑇, 𝜋).
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We finally prove that (2.1.2) holds for (𝑇𝛿∗ , 𝜋∗) for D and D𝑑 . We have

𝐵(𝑇𝛿∗ , 𝜋∗) = inf
𝛿∈D

𝐵(𝛿, 𝜋∗) ≤ inf
𝑇∈D𝑑

𝐵(𝑇, 𝜋∗) ≤ inf
𝛿∈D

𝐵(𝛿, 𝜋∗) = 𝐵(𝑇𝛿∗ , 𝜋∗),

where the first inequality follows from the inclusion D𝑑 ⊆ D and the second from (2.1.5). Similarly,
we have

𝐵(𝑇𝛿∗ , 𝜋∗) ≤ sup
𝜋∈P

𝐵(𝑇𝛿∗ , 𝜋) ≤ sup
𝜋∈P

𝐵(𝛿∗, 𝜋) = 𝐵(𝑇𝛿∗ , 𝜋∗),

where the second inequality follows again from (2.1.5). This concludes the proof. □

Before closing this section, we provide another existence result under slightly different conditions.
The merit of this result is mostly in its proof, which differs from Proposition 2.1 and provides an early
illustration of the tension between compactness and semicontinuity that will be explored in greater
details later.

Corollary 2.3. Suppose that Θ is a separable metric space. Suppose, moreover, that
1. the Bayesian risk is upper semicontinuous on the weak closure P̄;
2. for each 𝛿 ∈ D0, the risk function 𝑟 is lower semicontinuous in 𝜃
Then Proposition 2.1 holds under the weaker condition thatP is weakly relatively compact instead

of weakly compact. In particular, a maximin prior that belongs to P exists.

Proof. We first prove a preliminary result. Suppose 𝜋𝑛 weakly converges to 𝜋. Then lim inf 𝜋𝑛 (𝑂) ≥
𝜋(𝑂) for all open sets 𝑂 ⊆ Θ. Since 𝑟 is assumed lower semicontinuous, it has open superlevel sets.
Since it is bounded from below by 0, we have that

∫
𝑟 (𝛿, 𝜃) 𝑑𝜋𝑛 (𝜃) =

∫ ∞
0 𝜋𝑛 ({𝜃 : 𝑟 (𝛿, 𝜃) > 𝑦}) 𝑑𝑦.

Therefore, lim inf𝑛→∞
∫
𝑟 (𝛿, 𝜃) 𝑑𝜋𝑛 (𝜃) ≥

∫
𝑟 (𝛿, 𝜃) 𝑑𝜋 for every 𝛿 ∈ D0.

Since the Bayesian risk is weakly continuous on P̄ and P̄ is weakly compact, we can apply
Proposition 2.1 to the closure P̄ instead of P . In particular, there exists a maximin prior 𝜋∗ that
belongs to P̄ . We now prove that 𝜋∗ can be taken to belong P . If 𝜋∗ ∈ P , there is nothing to prove.
Now take 𝜋∗ ∈ P̄ \P . Since the weak topology on M1 is metrizable under separability (see Theorem
11.3.3 in Dudley (2004)), there exists a sequence (𝜋𝑛) in P such that 𝜇𝑛 converge weakly to 𝜋∗. Since
𝑟 is lower semi-continuous in 𝜃 by assumption, we have lim inf𝑛→∞ 𝐵(𝛿∗, 𝜋𝑛) ≥ 𝐵(𝛿∗, 𝜋∗) from the
preliminary result. In particular, there is some 𝑛 ∈ N such that 𝐵(𝛿∗, 𝜋𝑛) ≥ 𝐵(𝛿∗, 𝜋∗). Since (𝛿∗, 𝜋∗)
is a saddle point, we also have 𝐵(𝛿∗, 𝜋𝑛) ≤ 𝐵(𝛿∗, 𝜋∗). Thus 𝐵(𝛿∗, 𝜋𝑛) = 𝐵(𝛿∗, 𝜋∗) and 𝜋𝑛 ∈ P ,
which proves the claim. □

2.2 Comments on the assumptions of Proposition 2.1

Assumption 1. The lower semicontinuity in 𝑎 of the loss function is typically verified in estimation
problems. This includes, for instance, all problems with Θ ⊆ R𝑛, A ⊆ R̄𝑛, and weighted 𝑙𝑝 losses,
𝑝 ≥ 1, of the form

𝐿 (𝑎, 𝜃) =

𝑤(∥𝑎 − 𝜃∥ 𝑝) if (𝑎, 𝜃) ∈ R𝑛 × R𝑛

+∞ otherwise
,
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where ∥ · ∥ 𝑝 is the 𝑝-norm on R𝑛 and 𝑤 : R→ [0, +∞) is a continuous convex increasing function.

Assumption 2. The weak upper semicontinuity of the Bayes risk holds under fairly gen-
eral conditions. We consider two cases: 1. conditions under which the integrated risk is weakly
continuous; 2. more general conditions under which the integrated risk may not be weakly continuous.

1. For the assumption to hold, it suffices that the integrated risk 𝐵 is weakly continuous in 𝜋. Under
separability of the parameter space Θ (implying metrizability of weak convergence), this holds in two
common cases that we detail below.

U.1. The risk function 𝑟 is continuous and bounded in 𝜃, which directly implies continuity of 𝐵 by
definition of weak convergence. This happens regularly when the parameter space Θ and the
action space A are compact. For instance, consider models with

(i) Θ = A = [−𝑚, 𝑚] for some 𝑚 > 0,

(ii) {𝑃𝜃 : 𝜃 ∈ Θ} a family of distributions with density functions continuous in 𝜃,

(iii) any loss function 𝐿 that is continuous in 𝜃 and 𝑎.

Then the risk 𝑟 is continuous in 𝜃 as the double integral of a continuous integrable function
(see Lemma 16.1 in Bauer (2011)), and so 𝑟 is bounded on the compact set Ω.

U.2. The risk function 𝑟 is continuous in 𝜃 but potentially unbounded and for each 𝛿 ∈ D0, the
random variables 𝑟 (𝛿, 𝜃) are uniformly integrable over P . Indeed, weak convergence and
uniform integrability imply convergence of the first moment (see Theorem 3.2.8 in Durrett
(2019)), that is,

𝜋𝑛
𝑤𝑒𝑎𝑘−−−−→
𝑛→∞

𝜋 and lim
𝐾→∞

sup
𝜋∈P

∫
𝑟 (𝛿, 𝜃)1𝑟 (𝛿,𝜃 )≥𝐾 𝑑𝜋(𝜃) = 0

imply ∫
𝑟 (𝛿, 𝜃) 𝑑𝜋𝑛 (𝜃) −−−−→

𝑛→∞

∫
𝑟 (𝛿, 𝜃) 𝑑𝜋(𝜃),

which corresponds to weak continuity of the integrated risk. If Θ ⊆ R, this typically happens
when 𝜃 is uniformly integrable over P and 𝑟 satisfies for each 𝛿 ∈ D0 a growth condition of the
form 𝑟 (𝜃, 𝛿) ≤ 𝐶 |𝜃 | for 𝜃 large enough.

2. The last conditions apply in a number of problems, but since weak semicontinuity of the Bayes
risk is (much) weaker than weak continuity of the integrated risk, we suggest weaker conditions that
cover a number of important cases.

U.3. If the integral sign and the infimum can be interchanged in the definition of the Bayes risk,
then the conditions in (U.2.) need only be verified for the function 𝜃 ↦→ inf 𝛿∈D0 𝑟 (𝛿, 𝜃). In
particular, for Θ ⊆ R, the growth conditions inf 𝛿∈D0 𝑟 (𝛿, 𝜃) ≤ 𝐶 |𝜃 | is more easily verified. For
instance, if D0 includes deterministic rules, then inf 𝛿∈D0 𝑟 (𝛿, 𝜃) ≤

∫
𝐿 (𝑥, 𝜃) 𝑑𝑃𝜃 (𝑥), and for
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some standard parametric families, 𝐿 (𝑥, 𝜃) 𝑑𝑃𝜃 (𝑥) ≤ 𝐶 |𝜃 | for 𝜃 large enough. The interchange
of integral and infimum is justified in a number of cases. In particular, if the infimum on both
sides can be approximated by a sequence of measurable functions, then standard convergence
theorems for the Lebesgue integral can be invoked. We leave it for future research to apply
such approximation procedure for existing statistical problems.

U.4. If the 𝑙𝑝 loss is used and the priors are assumed to have bounded 𝑝 moments, an approximation
argument can be directly worked out without invoking the interchange of integral and infimum.
The idea can be traced back to Donoho and Johnstone (1994) and combines nicely with
tightness results ensuring compactness. Suppose Θ ⊆ R, A ⊆ R̄ is convex, 𝐿 is the 𝑙𝑝 loss
for 𝑝 ≥ 1, and D0 = D. Suppose the priors in P have bounded first 𝑝 moments. Suppose
that the measures 𝑃𝜃 , 𝜃 ∈ Θ, have bounded first 𝑝 moments and admit densities continuous
in 𝜃. Denote D 𝑓 the non-randomized rules 𝑇 that take values in R (excluding ±∞) and
D𝑚 = {𝑇 ∈ D 𝑓 : 𝑇 (𝑥) = 𝑥 if |𝑥 | ≥ 𝑚}. Then each rule in D𝑚 has bounded risk, and so
𝜋 ↦→ inf𝑇∈D𝑚

𝐵(𝑇, 𝜋) is weakly upper semicontinuous as the infimum of a family of weakly
continuous functions. The setsD𝑚 are increasing as𝑚 → ∞, and so inf𝑇∈D𝑚

𝐵(𝑇, 𝜋) decreases
as 𝑚 → ∞, hence 𝜋 ↦→ inf𝑇∈D𝑚

𝐵(𝑇, 𝜋) has a limit which we denote 𝐵∗(𝜋). If we can prove
that

𝐵∗(𝜋) = inf
𝛿∈D

𝐵(𝛿, 𝜋),

then 𝜋 ↦→ inf 𝛿∈D 𝐵(𝛿, 𝜋) is the decreasing (pointwise) limit of a family of weakly upper
semicontinuous functions and so is weakly upper semicontinuous. We show that the equality
holds under the conditions specified above. Since inf 𝛿∈D 𝐵(𝛿, 𝜋) ≤ inf𝑇∈D𝑚

𝐵(𝑇, 𝜋), then
inf 𝛿∈D 𝐵(𝑇, 𝜋) ≤ 𝐵∗(𝜋) by taking limits as 𝑚 → ∞. To show the reverse inequality, we
restrict attention to the subset D𝐹 of deterministic rules in D 𝑓 with finite integrated risk (since
otherwise the inequality is trivially verified). For any such rule 𝑇 ∈ D𝐹 , define 𝑇𝑚 ∈ D𝑚 by
𝑇𝑚(𝑥) = 𝑇 (𝑥)1{|𝑥 | ≤ 𝑚} + 𝑥1{|𝑥 | > 𝑚}. Then 𝑟 (𝑇𝑚, 𝜃) → 𝑟 (𝑇, 𝜃) uniformly on compact sets
as 𝑚 → ∞. To see this, note that for any compact subset 𝐾 ⊆ Θ,

sup
𝜃∈𝐾

��𝑟 (𝑇𝑚, 𝜃) − 𝑟 (𝑇, 𝜃)�� = sup
𝜃∈𝐾

���� − ∫
|𝑥 |>𝑚

|𝑇 (𝑥) − 𝜃) |𝑝 𝑑𝑃𝜃 (𝑥)

+
∫
|𝑥 |>𝑚

|𝑥 − 𝜃 |𝑝 𝑑𝑃𝜃 (𝑥)
����

≤ sup
𝜃∈𝐾

∫
|𝑥 |>𝑚

|𝑇 (𝑥) − 𝜃) |𝑝 𝑑𝑃𝜃 (𝑥)

+ sup
𝜃∈𝐾

∫
|𝑥 |>𝑚

|𝑥 − 𝜃 |𝑝 𝑑𝑃𝜃 (𝑥).

Then, by applying Dini’s theorem to
∫
|𝑥 |>𝑚 |𝑇 (𝑥) − 𝜃) |𝑝 𝑑𝑃𝜃 (𝑥) and to

∫
|𝑥 |>𝑚 |𝑥 − 𝜃 |𝑝 𝑑𝑃𝜃 (𝑥),

which are monotonically decreasing sequences of continuous functions in 𝜃 (see Lemma 16.1
in Bauer (2011)) that converge pointwise to 0 (since 𝑇 has finite risk and 𝑃𝜃 has bounded 𝑝
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moments), we obtain that

sup
𝜃∈𝐾

��𝑟 (𝑇𝑚, 𝜃) − 𝑟 (𝑇, 𝜃)�� −−−−−→
𝑚→∞

0.

It follows that
∫
𝑟 (𝑇𝑚, 𝜃) 𝑑𝜋(𝜃) →

∫
𝑟 (𝑇, 𝜃) 𝑑𝜋(𝜃) as 𝑚 → ∞. Then for any rule 𝑇 ∈

D𝐹 , inf𝑚 𝐵(𝑇𝑚, 𝜋) ≤ 𝐵(𝑇, 𝜋). Thus inf𝑇∈D𝑚
𝐵(𝑇, 𝜋) ≤ inf𝑇∈D𝐹

𝐵(𝑇, 𝜋) ≤ inf 𝛿∈D 𝐵(𝛿, 𝜋),
where the last inequality follows from (2.1.4) (since 𝐿 is convex in 𝑎). Therefore, 𝐵∗(𝜋) =

inf 𝛿∈D 𝐵(𝛿, 𝜋), and the conclusion follows.

Assumption 3. The weak compactness of P is typically verified under two conditions which we
detail below. For solutions involving the compactification of the parameter space, see Section 3.3.

C.1. If the parameter space Θ is a compact metric space, then the Banach– Alaoglu theorem
guarantees that M1(Θ) is weakly compact (since it is weakly closed in the unit ball of C (Θ)∗),
and so any weakly closed set of probability measures is weakly compact.

C.2. If the space Θ is not compact, then we can still hope to invoke Prokhorov’s theorem (which
guarantees weak relative compactness for tight families of probability measures). Due to the
ubiquity of applications calling for tightness, many results for standard families are available. A
fundamental case for our purpose is when the measures inP have uniformly bounded moments.
In this case, Markov’s inequality implies tightness (see Lemma A.4), and so we obtain a weakly
compact family of priors without having to assume compactness of the parameter space. Under
the 𝑙𝑝 loss, this tightening procedure also ensures that (U.4.) is satisfied, and so we obtain upper
semicontinuity of the Bayesian risk at no extra cost. This tightening procedure, which directly
yields existence results for maximin priors without compactness of the parameter space, was
first considered in Feldman (1991) and extended in Donoho and Johnstone (1994). Additional
comments on the applicability of this procedure are provided in Remark 2.3.

Assumption 4. The condition holds for D0 = D by construction of the vector space topology
on D (see Lemma 1.1). The possibility to restrict D0 to strict subsets of D is of interest, but its
applicability is limited in practice as we now illustrate. Indeed, it is natural to consider for D0 a
subset of deterministic decision rules (e.g., linear rules, thresholding rules, etc.). However, such a set
will not be generally convex since the convex combination of Dirac measures are not Dirac measures.
If it is still possible to consider the closure of the convex hull of a set D𝑑 of deterministic rules, we
general face an intricate problem: either this set is hard to characterize or it is directly equal to D.
For instance, if D𝑑 includes Dirac measures at 𝑇𝑎 (𝑥) = 𝑎 for all 𝑎 ∈ A, then the closure of the convex
hull of D𝑑 is equal to M1(A) by Choquet’s theorem. (This should not come as a surprise since
randomized rules have been (artificially) introduced to "fill holes".) We leave it for future research to
characterize the convex closure of smaller sets of deterministic rules and to derive related complete
class theorems so as to obtain existence results for strict subsets D0 ⊂ D.

Remark 2.3. From the discussion above, it appears that there are at least two practical ways to ensure
the existence of maximin priors under the weak topology when the 𝑙𝑝 loss is used: either to work
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with a compact parameter space or to work with priors with bounded moments. The latter approach
has been much less explored than the former in spite of being more general (since the compactness
of the parameter space ensures that the priors have finite moments of any order). While the choice of
bounds on the priors’ moments may be less intuitive than the choice of a range for the parameter, we
still advocate for bounds on the priors’ moments due to the increased robustness at no extra cost. It is
an interesting avenue for research to investigate and compare the effects of these different constraints
on minimax estimation. Some explorations in this direction can be found in Feldman (1991) and
in Section 13.3 in Johnstone (2019). An important aspect of the comparison is computational: we
expect some non-trivial gains in some problems; e.g., Feldman (1991) exhibits cases in the normal
mean problem where the moment constraints make the maximin prior directly normal so that they
can be computed much more easily than the ones under compact parameter spaces.

2.3 Applications

2.3.1 Bounded normal mean estimation under 𝑙𝑝 loss

Consider estimation of 𝜃 in the model 𝑃𝜃 = 𝑁 (𝜃, 1) under the 𝑙𝑝 loss, 𝑝 ≥ 1, where it is assumed
that:

(i) the parameter space is Θ = [−𝑚, 𝑚];

(ii) the action space is A = [−𝑚, 𝑚];

(iii) the set of decision rules D0 is the whole set D;

(iv) the set of priors is P = M1( [−𝑚, 𝑚]);

for some 𝑚 > 0.

Proposition 2.4. In the above model, a maximin prior that generates a saddle point exists.

Proof. This is a standard application of (U.1.) and (C.1.). The 𝑙𝑝 loss function is continuous in 𝜃 and
𝑎 and the normal distribution 𝑁 (𝜃, 1) has continuous density as a function of 𝜃. It follows that the risk
function 𝑟 is continuous and bounded (see Lemma 16.1 in Bauer (2011)), and so the Bayesian risk
is upper semicontinuous. Since the parameter space is compact, the set of priors is weakly compact.
Moreover, P is trivially convex since P = M1(Θ). Since D0 = D, the set of decision rules is weakly
closed and convex. Then Proposition 2.1 applies, and there exists a maximin prior that generates a
saddle point. □

Reference. This is a classical result in the literature, available at least as early as Ghosh (1964). See,
for instance, Section 4.6 in Johnstone (2019).

2.3.2 Unbounded normal mean estimation under 𝑙𝑝 loss with moment condition

Consider estimation of 𝜃 in the model 𝑃𝜃 = 𝑁 (𝜃, 1) under the 𝑙𝑝 loss, 𝑝 ≥ 1, where it is assumed
that:
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(i) the parameter space is Θ = R;

(ii) the action space is A = R ∪ {∞};

(iii) the set of decision rules D0 is the whole set D;

(iv) the set of priors is

P 𝑝 = {𝜋 ∈ M1(R) :
∫
R
|𝜃 |𝑝 𝑑𝜋(𝜃) ≤ 𝑀}

for some 𝑀 ∈ R.

Proposition 2.5. In the above model, a maximin prior that generates a saddle point exists.

Proof. This is a standard example of the tightening procedure through the moment constraint on the
set of priors. We thus rely on (U.4.) and (C.2.). The 𝑙𝑝 loss function is continuous in 𝜃 and 𝑎 and the
normal distribution 𝑁 (𝜃, 1) has finite moments of all orders and a continuous density as a function of
𝜃. The argument in (U.4.) based on the moment condition guarantees that the Bayesian risk is upper
semicontinuous. The moment condition also ensures the tightness of P 𝑝 using Markov’s inequality
(see Lemma A.4). Moreover, the (weak) inequality for the moment condition ensures that P 𝑝 is
weakly closed. Indeed, by a version of Fatou’s lemma (see Theorem 1.1 in Feinberg, Kasyanov, and
Zadoianchuk (2014)), if 𝜋𝑛 → 𝜋 weakly, then∫

R
|𝜃 |𝑝 𝑑𝜋(𝜃) ≤ lim inf

𝑛→∞
|𝜃 |𝑝 𝑑𝜋𝑛 (𝜃) ≤ 𝑀.

Hence, P 𝑝 is weakly compact. Moreover, it is easily seen by linearity of the space of measures that
P 𝑝 is convex. Indeed, for any 𝑎 ∈ (0, 1), we have that∫

|𝜃 |𝑝 𝑑 (𝑎𝜋1 + (1 − 𝑎)𝜋2) = 𝑎
∫

|𝜃 |𝑝 𝑑𝜋1 + (1 − 𝑎)
∫

|𝜃 |𝑝 𝑑𝜋2 ≤ 𝑎𝑀 + (1 − 𝑎)𝑀 = 𝑀

for any 𝜋1, 𝜋2 ∈ P 𝑝. Since D0 = D, the set of decision rules is weakly closed and convex. Then
Proposition 2.1 applies, and there exists a maximin prior that generates a saddle point. □

Reference. This result was first stated without proof in Feldman (1991). The main elements of the
proof can be found in Donoho and Johnstone (1994) p.285 and p.297.

2.3.3 Sparse unbounded normal mean estimation under 𝑙𝑝 loss with moment condition

Consider estimation of 𝜃 in the model 𝑃𝜃 = 𝑁 (𝜃, 1) under the 𝑙𝑝 loss, 𝑝 ≥ 1, where it is assumed
that:

(i) the parameter space is Θ = R;

(ii) the action space is A = R ∪ {∞};

(iii) the set of decision rules D0 is the whole set D;
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(iv) the set of priors is
𝔪
𝑝

0 (𝜀) = {𝜀𝔡0 + (1 − 𝜀)𝜋 : 𝜋 ∈ P 𝑝}

where 𝔡0 is the Dirac measure at 0 and P 𝑝 = {𝜋 ∈ M1(R) :
∫
R
|𝜃 |𝑝 𝑑𝜋(𝜃) ≤ 𝑀} for some

𝑀 ∈ R and some 𝜀 ∈ (0, 1).

Proposition 2.6. In the above model, a maximin prior that generates a saddle point exists.

Proof. This is another example of the tightening argument. We can easily show that the priors in
𝔪
𝑝

0 (𝜀) have uniformly bounded 𝑝 moments by the linearity of the integral with respect to measures.
Indeed, the Dirac measure at 0 has moments of any order equal to zero andP 𝑝 has uniformly bounded
moments by definition. It then follows from (U.4.) that the Bayesian risk is weakly upper continuous.
It remains to prove that 𝔪𝑝

0 (𝜀) is weakly compact. For this, it suffices to note that 𝔪𝑝

0 (𝜀) is the
weighted Minkowski sum of two weakly compact convex sets, namely the singleton {𝔡0} and the
set P 𝑝 (which was proved to be weakly closed and convex in Section 2.3.2). Then Proposition 2.1
applies, and there exists a maximin prior that generates a saddle point. □

Reference. This result, which leverages the tightening argument previously worked out, is new. The
problem emerges from minimax estimation under performance constraint at 0 (e.g., for sparsity
reasons – see Johnstone (2019)). The result relaxes the standard compactness assumption on the
parameter space (see Remark 2.3). We show in the next sections that other results in the literature
that try to completely relax the boudedness assumptions either are incorrect (Johnstone (2019))
or reimpose strong boundedness conditions on the parameter space (Bickel (1983) and Bickel and
Collins (1983)).

3 Existence of maximin priors under the vague topology

3.1 An impossibility result under the vague topology

The previous results show that the existence of maximin priors under the weak topology generally
requires some form of tightening. To completely relax boundedness assumptions of the parameter
or the priors and restore full robustness, a natural solution is to work with a coarser topology on the
priors. The most natural candidate for this purpose is the vague topology, as first considered by Huber
in Huber (1964) for the minimization of the Fisher information. Indeed, by embedding the priors (as
a subset of M1(Θ)) in the set of subprobability measures M≤1(Θ) endowed with the vague topology,
relative compactness of the initial set of priors easily obtains (see Lemma A.1). While this approach
has proved successful in the context considered by Huber, we show that it may not be the case in
minimax games for the average risk of the form previously considered. To see this, note that to obtain
general existence results for maximin priors using compactness arguments through the extreme value
theorem applied to any given topology on the priors, we need at least that:

1. the set of priors is compact for this topology;

2. the Bayesian risk is upper semicontinuous with respect to this topology.
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The main issue is that the properties (1.) and (2.) work in opposite direction: the coarser the topology
on a set Θ, the more compact sets on Θ, but the fewer (upper semi)continuous functions (with initial
space Θ). While it is always possible to gather high-level conditions for a general existence result
under the vague topology (see Proposition B.1 where Θ is assumed locally compact so that the vague
topology is well-defined), it often happens in practice that the two conditions cannot be satisfied
jointly in cases where the weak topology does not already deliver a valid solution. Indeed, we
commonly face the two following disjoint cases:

• either the set of priors P ⊆ M1(Θ) is closed in the vague topology (in particular, there is no
"escape of mass at infinity"), and hence weakly compact (see Lemma A.2), and so Proposition
2.1 can be applied with only weak upper semicontinuity of the Bayesian risk to be verified;

• or the set of priors P is not closed in the vaguely topology and its vague closure include
elements in M<1(Θ) (that is, there is "escape of mass at infinity"), and then the Bayesian risk
is often not vaguely upper semicontinuous on the vague closure P̄ .

This makes Proposition B.1 either superfluous or inapplicable, despite its implicit use in the
literature – see, e.g., Johnstone (2019). Due to the large degree of freedom of statistical decision
problems, it is impractical to derive general impossibility results linking "escape of mass at infinity"
and the failure of upper semicontinuity of the Bayesian risk. However, we are still able to illustrate
the tension between compactness and semicontinuity in specific problems. In the next subsections,
we focus on the normal mean problem and the sparse normal mean problem where "escape of mass at
infinity" prevents the Bayesian risk from being vaguely upper semicontinuous. In the course of these
examples, we show that Brown’s equality does not hold for subprobability measures on the whole
real line. This corrects a number of results available in Johnstone (2019).

3.2 Examples

3.2.1 Unbounded normal mean estimation under 𝑙2 loss

Consider estimation of 𝜃 in the model 𝑃𝜃 = 𝑁 (𝜃, 1) under the 𝑙2 loss where it is assumed that:

(i) the parameter space is Θ = R;

(ii) the action space is A = R ∪ {∞};

(iii) the set of decision rules D0 is the whole set D;

(iv) the set of priors is M1(R).

The set M1(R) is not weakly compact, so Proposition 2.1 cannot be applied directly. The set
M≤1(R), which is the vague closure of M1(R), is, however, vaguely compact, but we show that the
Bayesian risk is typically not vaguely upper semicontinuous on it. For this, we review a number of
standard results for unbounded normal mean estimation and vague convergence.
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Lemma 3.1. Let 𝜇𝑛 = 𝑁 (0, 𝑛) be the Gaussian distribution on R with mean 0 and variance 𝑛 ∈ N,
𝜇0 the zero measure on R (that is, 𝜈0(𝐵) = 0 for all 𝐵 ∈ B(R)), and 𝜆 the Lebesgue measure on R.
Then

1. 𝑁 (0, 𝑛) does not converge weakly as 𝑛→ ∞;
2.

𝑁 (0, 𝑛)
𝑣𝑎𝑔𝑢𝑒
−−−−−→
𝑛→∞

𝜈0.

Proof. We start by proving (2.). Let 𝑓 ∈ 𝐶𝑐 (R) with support 𝐴 compact. Then ∥ 𝑓 ∥∞ < ∞ and for
all 𝑥 ∈ R, | 𝑓 (𝑥) | ≤ ∥ 𝑓 ∥∞1𝐴(𝑥). Thus����∫

R
𝑓 𝑑𝜇𝑛

���� ≤ ∥ 𝑓 ∥∞
∫
𝐴

𝑑𝜇𝑛 =
1

√
2𝜋𝑛

∥ 𝑓 ∥∞
∫
𝐴

exp
(
− 𝑥

2

2𝑛

)
𝑑𝑥

≤ 1
√

2𝜋𝑛
∥ 𝑓 ∥∞

∫
𝐴

𝑑𝑥 −−−−→
𝑛→∞

0.

We now prove (1.). Suppose by contradiction that 𝜇𝑛
𝑤𝑒𝑎𝑘𝑙𝑦
−−−−−−→ 𝜇. Since 1 ∈ 𝐶𝑏 (R), then

𝜇(R) = 1. Since 1𝐴 ∈ 𝐶𝑐 (R) for any compact subset 𝐴, we must have from (2.) and the Portmanteau
theorem that 𝜇(𝐴) = 0. Since R can be written as the countable union of compact intervals, it follows
from the union bound that 𝜇(R) = 0: a contradiction. □

Lemma 3.2. In the model of this subsection, we have that:
1. the Bayes rule with respect to 𝑁 (0, 𝑘) is given by the deterministic rule

𝑑𝑁 (0,𝑘 ) (𝑥) = E [𝜃 |𝑋 = 𝑥] = 1
1/𝑘2 + 1

𝑥,

with integrated risk

𝐵𝑘 = E 𝑋 [Var(𝜃 |𝑋)] = 1
1/𝑘2 + 1

−−−−→
𝑘→∞

1;

2. the deterministic rule 𝑇 (𝑥) = 𝑥 is minimax with minimax risk 𝑅𝑁 (Θ) = 1;
3. (𝑁 (0, 𝑘))𝑘∈N is a sequence of maximin priors in the sense that

lim
𝑘→∞

inf
𝛿∈D

𝐵(𝛿, 𝑁 (0, 𝑘)) = 1 ≥ inf
𝛿∈D

𝐵(𝛿, 𝜋)

for all 𝜋 ∈ P , but there is no maximin prior in the weak topology.

Proof. This is a common result in the literature. See, for instance, Section 1.8 p.48 and Section 2.11
p.94 in Ferguson (1967), or Example 4.2.2, Example 4.2.4, and Example 5.1.14 in Lehmann and
Casella (1998) pp.233-235 and p.317. □

Proposition 3.3. In the model of this subsection, we have that:
1. the sequence of maximin priors (𝑁 (0, 𝑘))𝑘∈N does not converge vaguely to a maximin prior in

the vague topology (if it exists);
2. the Bayes risk function 𝜋 ↦→ inf 𝛿∈D 𝐵(𝛿, 𝜋) is not vaguely upper semicontinuous on M≤1(R).
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Proof. By Lemma 3.1, the sequence (𝑁 (0, 𝑘))𝑘∈N converges vaguely to the zero measure 𝜈0 whose
Bayes risk is given by

inf
𝛿∈D

𝐵(𝛿, 𝜈0) = 0 < 1 = lim
𝑘→∞

inf
𝛿∈D

𝐵(𝛿, 𝑁 (0, 𝑘)).

This concludes the proof for (1.) and (2.). □

This result does not prove that there does not exist a maximin prior in the vague topology, only
that standard arguments to prove existence based on compactness and semicontinuity do not apply in
this case. Nonetheless, this still implies, as shown below, that the following equality

𝐵(𝜋) = 1 − 𝐼 (𝜋 ∗ 𝜙),

where 𝐼 is the Fisher information, ∗ denotes convolution, and 𝜙 is the standard normal density, does
not hold for subprobability measures on the whole real line. This equality has been referred to as
Brown’s identity in the literature (see Proposition 4.5 in Johnstone (2019)).

Corollary 3.4. Brown’s identity does not hold on M≤1(R).

Proof. Brown’s identity implies that the Bayes risk function is vaguely upper semicontinuous as
(a constant plus) the Fisher information, which is vaguely lower semicontinuous by definition: a
contradiction with Proposition 3.3. □

3.2.2 Sparse unbounded normal mean estimation under 𝑙2 loss

Consider estimation of 𝜃 in the model 𝑃𝜃 = 𝑁 (𝜃, 1) under the 𝑙2 loss where it is assumed that:

(i) the parameter space is Θ = R;

(ii) the action space is A = R ∪ {∞};

(iii) the set of decision rules D0 is the whole set D;

(iv) the set of priors is
𝔪0(𝜀) = {𝜀𝔡0 + (1 − 𝜀)𝜇 : 𝜇 ∈ M1(R)}

where 𝜀 ∈ (0, 1) and 𝔡0 is the Dirac measure at 0.

The set of priors𝔪0(𝜀) is not weakly compact, so Proposition 2.1 cannot be applied. However, we
consider 𝔪0(𝜀) as a subset of the set of subprobability measures endowed with the vague topology
and take its vague closure, that is, the set 𝔪0(𝜀) = {𝜀𝔡0 + (1 − 𝜀)𝜇 : 𝜇 ∈ M≤1(R)}, which is
then a compact subset of M≤1(R). We show that the Bayesian risk function for this problem is
not vaguely upper semicontinuous on 𝔪0(𝜀), so that the standard arguments based on compactness
and semicontinuity cannot be used to prove existence. The implications of this result for sparse
unbounded normal mean estimation are further explored in next section.
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Proposition 3.5. Consider the problem defined above for some 𝜀 ∈ (0, 1). Then the Bayesian risk
function 𝜋 ↦→ inf 𝛿∈D 𝐵(𝛿, 𝜋) is not vaguely upper semicontinuous on 𝔪0(𝜀).

Proof. Take 𝜀 ∈ (0, 1) and 𝜇𝑘 = 𝑁 (0, 𝑘). Then 𝜀𝔡0 + (1 − 𝜀)𝜇𝑘 ∈ 𝔪0(𝜀) for all 𝑘 ∈ N. By Lemma
3.1, we have

𝜀𝔡0 + (1 − 𝜀)𝜇𝑘
𝑣𝑎𝑔𝑢𝑒
−−−−−→
𝑛→∞

𝜀𝔡0 + (1 − 𝜀)𝜈0

where 𝜈0 is the measure zero. We have that

inf
𝛿∈D

𝐵(𝛿, 𝜀𝔡0 + (1 − 𝜀)𝜈0) = 𝜀 inf
𝛿∈D

𝐵(𝛿, 𝔡0) = 0,

and that

inf
𝛿∈D

𝐵(𝛿, 𝜀𝔡0 + (1 − 𝜀)𝑁 (0, 𝑘)) ≥ 𝜀 inf
𝛿∈D

𝐵(𝛿, 𝔡0) + (1 − 𝜀) inf
𝛿∈D

𝐵(𝛿, 𝑁 (0, 𝑘))

= 1 − 𝜀.

Therefore,

inf
𝛿∈D

𝐵(𝛿, 𝜀𝔡0 + (1 − 𝜀)𝜈0) = 0 < 1 − 𝜀 = lim
𝑘→∞

inf
𝛿∈D

𝐵(𝛿, 𝜀𝔡0 + (1 − 𝜀)𝑁 (0, 𝑘)),

which proves that the Bayesian risk is not vaguely upper semicontinuous. □

3.3 A remark on the compactification of the parameter space

The approach considered above is exactly the one developed by Huber in Huber (1964) for the
minimization of the Fisher information and redeveloped in Johnstone (2019) for the average risk
(with a few important errors). The approach has a nice interpretation since M≤1(R) endowed with
the vague topology exactly corresponds to M1(R ∪ {∞}) endowed with the weak topology where
R ∪ {∞} is the one-point compactification of R (see Proposition 3.6). This suggests an alternative
approach to relax boundedness assumptions based on using another compactification of the real line
while sticking to the weak topology. This is exactly what is done in Bickel (1983) and Bickel and
Collins (1983) for the sparse normal mean problem where the two-point compactification of the real
line R ∪ {−∞,∞} = [−∞, +∞] is used.

We first show that this construction is not equivalent to the one considered by Huber in Huber
(1964) (contrarily to what has been implicitly suggested in Bickel (1983) and Bickel and Collins (1983)
and explictly claimed in Johnstone (2019)). More importantly, we show that this construction cannot
be considered as a solution to the problem of relaxing boundedness assumptions in existence results
since M1( [−∞, +∞]) is seen to correspond exactly to M1( [−𝜋/2, 𝜋/2]), both endowed with the
weak topology. In other words, working with probability measures on the two-point compactification
of the real line [−∞, +∞] as done in Bickel (1983) and Bickel and Collins (1983) is equivalent to
working with probability measures on [−𝜋/2, 𝜋/2] (and not subprobability measures on R), hence
imposing strong boundedness conditions on the parameter. Moreover, the bounds −𝜋/2 and 𝜋/2
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are arbitrary and depend only on the initial choice of the homeomorphism to define [−∞, +∞]:
we have chosen a standard normalization, but any rescaling −𝑧𝜋/2 and 𝑧𝜋/2 for 𝑧 > 0 could have
been considered. In other words, existence results when the parameter space is [−∞,∞] are exactly
existence results for the parameter space [−𝑧𝜋/2, 𝑧𝜋/2] for some 𝑧 > 0 which depends on the choice
of the homeomorphism by the modeler (and is often left unstated). For this reason, we strongly
advocate against using this approach in practice. A more reasonable solution is to explicitly work
with a parameter space [−𝑚, 𝑚] for some 𝑚 > 0. A more general approach (if the 𝑙𝑝 norm is
used) is to simply assume that the moments of the priors are bounded by some explicit constant
𝑀 ∈ R as recommended in Section 2.2. Given that the results of the last section suggest that Huber’s
approach does not transpose well to minimax games for the average risk, the option to bound the
priors’ moments is likely the most general to deliver existence results.

Proposition 3.6. The set M1(R∪ {∞}) of probability measures on R∪ {∞} endowed with the weak
topology is homeomorphic to the set M≤1(R) of subprobability measures on R endowed with the
vague topology.

Proof. We first prove that the function 𝜓 : M1(R ∪ {∞}) → M≤1(R) given by 𝜓(𝜇∞) = 𝜇 where
𝜇(𝐴) := 𝜇∞(𝐴) for all 𝐴 ∈ B(R) is a continuous bĳection. Consider the function 𝜓−1 given by
𝜓−1(𝜇) = 𝜇∞ where 𝜇∞(𝐴) := 𝜇(𝐴) for all 𝐴 ∈ B(R) and 𝜇∞({∞}) = 1 − 𝜇(𝐸). It is directly seen
that 𝜓−1 is an inverse function for 𝜓. Suppose now that 𝜇∞𝑛 → 𝜇∞ weakly. By Proposition 4.36 in
Folland (1999) (since 𝐶𝑐 (R) ⊆ 𝐶0(R) ⊆ 𝐶 (R)), any compactly supported continuous function 𝑓 on
R extends continuously to a continuous function 𝑔 on R ∪ {∞} such that 𝑓 = 𝑔 on R and 𝑔(∞) = 0.
Hence for any such 𝑓 ,∫

R
𝑓 𝑑𝜓(𝜇∞𝑛 ) =

∫
R
𝑔 𝑑𝜇𝑛 + 𝑔(∞) =

∫
R∪{∞}

𝑔 𝑑𝜇∞𝑛

−−−−→
𝑛→∞

∫
R∪{∞}

𝑔 𝑑𝜇∞ =

∫
R
𝑔 𝑑𝜇 =

∫
R
𝑓 𝑑𝜓(𝜇∞).

This proves that 𝜓 is continuous. Since M1(R ∪ {∞}) is compact and M≤1(R) is Hausdorff (see
p.192 in Bauer (2011)), it follows that 𝜓 is a homeomorphism (see Proposition 4.28 in Folland
(1999)). □

Proposition 3.7. The set M1(R ∪ {−∞, +∞}) of probability measures on R ∪ {−∞, +∞} endowed
with the weak topology is homeomorphic to the set M1( [−𝜋/2, 𝜋/2]) of probability measures on
[−𝜋/2, 𝜋/2] endowed with the weak topology.

Proof. We first prove that the function 𝜓 : M1(R ∪ {−∞, +∞}) → M1( [−𝜋/2, 𝜋/2]) given by
𝜓(𝜇∞) = 𝜇 := arctan∗(𝜇∞), where arctan∗(𝜇∞) is the pushforward measure of 𝜇 for arctan : R ∪
{−∞, +∞} → [−𝜋/2, 𝜋/2], is a continuous bĳection. Consider the function 𝜓−1 given by 𝜓−1(𝜇) =
𝜇∞ := tan∗(𝜇). It is directly seen that 𝜓−1 is an inverse function for 𝜓. To see this, note that
𝜓−1(𝜓(𝜇∞)) (𝐴) = 𝜇∞(tan(arctan(𝐴))) = 𝐴 for all 𝐴 ∈ B(R ∪ {−∞, +∞}) and 𝜓(𝜓−1(𝜇)) (𝐵) =

𝜇(arctan(tan(𝐵))) = 𝜇(𝐵) for all 𝐵 ∈ B( [−𝜋/2, 𝜋/2]). Suppose now that 𝜇∞𝑛 → 𝜇∞ weakly. We
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have for any continuous function 𝑓 that∫
[−𝜋/2, 𝜋/2]

𝑓 𝑑𝜓(𝜇∞𝑛 ) =
∫
R∪{−∞,∞}

𝑓 ◦ arctan 𝑑𝜇∞𝑛

−−−−→
𝑛→∞

∫
R∪{−∞,∞}

𝑓 ◦ arctan 𝑑𝜇∞ =

∫
[−𝜋/2, 𝜋/2]

𝑓 𝑑𝜓(𝜇∞),

where the first and last equalities follow from the definition of the pushforward measure (under
integrability) and the limit follows from the weak convergence of 𝜇∞𝑛 and the continuity of 𝑓 ◦ arctan.
Since M1(R ∪ {−∞,∞}) is compact and M1( [−𝜋/2, 𝜋/2]) is Hausdorff, it follows that 𝜓 is a
homeomorphism (see Proposition 4.28 in Folland (1999)). □

Remark 3.1. We believe that the compactification used in Bickel (1983) and Bickel and Collins (1983)
can be traced back to an heuristic comment in Huber (1964) and Huber (1981). While Huber does
not make use of this compactification in his proof (but directly works with subprobability measures
on R), this is not the case for Bickel (1983) and Bickel and Collins (1983) where the additional
topological properties of the two-point compactification are put to work in the use of Brown’s
identity. Moreover, it follows from Proposition 3.7 that, contrarily to what has been implictly or
explicitly claimed without proof in Bickel and Collins (1983) and Johnstone (2019) (see, for instance,
p.440 in Johnstone (2019)), the two-point compactification of R does not make M1(R ∪ {−∞, +∞})
endowed with the weak topology homeomorphic to M≤1(R) endowed with the vague topology.

3.4 A remark on the definition of the Bayes risk on M≤1(Θ)

The average risk and the Bayes risk are traditionally defined on M1(Θ) but not on M≤1(Θ).
There is some arbitrariness in the extension of these notions to M≤1(Θ). However, it is difficult
(from both a mathematical perspective and a statistical perspective) not to take the natural extension
of these notions by simply integrating over a finite measure. In our developments, we have always
taken these natural extensions as their definitions.

Nonetheless, one may naturally wonder if it is possible to redefine the Bayes risk for strict
subprobability measures so as to get upper semicontinuity. The simplest solution is to (upper
semi)continuously extend the Bayes risk on the space M<1(Θ). For instance, define for any 𝜋 ∈
P ∩M<1(Θ),

𝐵(𝜋) := max
{

lim
𝑛→∞

𝐵(𝜇𝑛) : 𝜇𝑛 ∈ 𝑉𝜋
}

where 𝑉𝜋 is the set of sequences of probability measures that vaguely converge to 𝜋. This naturally
guarantees upper semicontinuity of the Bayes risk. While this fix ensures the existence of a maximin
prior, this prior will typically be a pure subprobability prior (i.e., an improper prior in the terminology
of Johnstone (2019)). We exemplify this for the case of unbounded normal mean estimation.

Proposition 3.8. Consider the extension of the Bayes risk as defined above for normal mean estimation
with mean zero normal priors. Then a maximin prior exists, but no proper maximin prior exists.
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Proof. The conditions of Proposition B.1 are satisfied, so a maximin prior exists. By Lemma 3.2, we
know that for any proper prior 𝑁 (0, 𝑘), 𝐵(𝑁 (0, 𝑘)) < 1, while 𝐵(𝜈0) = lim𝑘→∞ 𝐵(𝑁 (0, 𝑘)) = 1. It
follows that 𝜈0 is the unique maximin prior for this problem. □

There obviously exist different ways to upper semicontinuously extend the Bayes risk onM<1(Θ),
but all such extensions rely on a similar idea which stands at the basis of the pathology. We conjecture
that in most cases redefining the Bayes risk by upper semicontinuous extension does not yield existence
of maximin priors that are proper probability measures. This is not an issue if one is more generally
interested in the existence of improper maximin priors (that is, pure subprobability measures that
achieve the minimax equality). If so, we conjecture that working with the 𝑞-vague topology of Bioche
and Druilhet (2016) is another solution to this problem. We do not tackle this question here and leave
the existence of improper maximin priors to future research.

4 Conclusion

In this paper, we contributed to statistical theory in two ways. We first extended the statistical
minimax theorems of Wald and Le Cam by providing general applicable conditions under which
maximin priors exist and are saddle points. We showed that these conditions not only obtained under
compactness of the parameter space but also under the weaker condition that the priors have bounded
moments, following a procedure first considered in Feldman (1991) and extended in Donoho and
Johnstone (1994). We then exhibited the inherent difficulty of relaxing these boundedness conditions
on the parameter space or the priors’s moments to increase the robustness of the resulting minimax
procedures. We first showed that Huber’s approach, based on embedding the priors in the set of
subprobability measures with the vague topology, does not transpose well in minimax games for
the average risk. We illustrated this issue in the normal mean problem and the sparse normal mean
problem when the parameter space is the whole real line where we found that the vague upper
semicontinuity of the Bayes risk could not be saved. In the course of illustrating this issue, we
corrected a number of results available in Johnstone (2019) and obtained as a result of independent
interest that Brown’s identity does not hold for subprobability measures on the whole real line. We
then showed that an alternative approach, considered in Bickel (1983) and Bickel and Collins (1983)
and based on taking the extended real line [−∞, +∞] as parameter space, imposed much stronger
boundedness conditions on the parameter than what the construction could suggest. In particular, we
showed that this compactification was not equivalent to the one considered by Huber (hence correcting
a number of claims in the literature) but amounted to exactly working with priors on [−𝑧𝜋/2, 𝑧𝜋/2]
where 𝑧 > 0 only depends on the arbitrary choice by the modeler of the homeomorphism to define
[−∞, +∞]. While our results do not exhaust the problem of existence of maximin priors in minimax
games for the average risk, they are still indicative of fundamental limits one faces when trying to gain
robustness against any potential move of Nature. We believe that our results and the discussions that
follow should be helpful for practitioners when deciding between different modeling assumptions for
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the associated minimax games. In particular, we call for caution when working with maximin priors
for the average risk without explicit bounds on the parameter or on the priors’ moments.
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Appendices

Appendix A Additional notations, definitions, and useful theorems

We endow R with its standard metric 𝑑 (𝑥, 𝑦) = |𝑥 − 𝑦 |, under which it is a locally compact
separable complete metric space. The space R∗ = R ∪ {∞} is the one-point compactification of
R, which is a compact metrizable space. The space R = R ∪ {−∞, +∞} = [−∞, +∞] is the two-
point compactification of R, which is endowed with the metric 𝑑 (𝑥, 𝑦) = |𝐴(𝑥) − 𝐴(𝑦) | where
𝐴(𝑥) = arctan 𝑥, under which it a compact separable complete metric space with Borel 𝜎-algebra
B(R) = {𝐸 ⊆ R : 𝐸 ∩ R ∈ B(R)}. We endow R, R∗, and R with their respective Borel 𝜎-algebra for
the mentioned topology. See p.45 and p.132 in Folland (1999) for additional properties.

Given a metric space 𝐸 , we define𝐶 (𝐸) = { 𝑓 : 𝐸 → R : 𝑓 is continuous},𝐶𝑏 (𝐸) = { 𝑓 ∈ 𝐶 (𝐸) :
𝑓 is bounded}, 𝐶𝑐 (𝐸) = { 𝑓 ∈ 𝐶 (𝐸) : 𝑓 has compact support}, 𝐶0(𝐸) = { 𝑓 ∈ 𝐶 (𝐸) : 𝑓 vanishes at
infinity} where the support of a function 𝑓 is defined as 𝑓 −1(R \ {0}) = {𝑥 : 𝑓 (𝑥) ≠ 0} and 𝑓 is
said to vanish at infinity if for all 𝜀 > 0, the set {𝑥 : | 𝑓 (𝑥) | ≥ 𝜀} is compact. We naturally have
𝐶𝑐 (𝐸) ⊆ 𝐶0(𝐸) ⊆ 𝐶𝑏 (𝐸) ⊆ 𝐶 (𝐸). The vector spaces 𝐶𝑏 (𝐸) and 𝐶𝑐 (𝐸) are endowed with the
supremum norm ∥ 𝑓 ∥∞ = sup{| 𝑓 (𝑥) | : 𝑥 ∈ 𝐸}. See Chapter 4 in Folland (1999) for reference.

There exist some divergence among authors when it comes to defining Radon measures and related
notions. For clarity, we briefly review the definitions and notations used in the paper. Given a metric
space 𝐸 endowed with its Borel𝜎-algebra E , we defineM(𝐸) to be the set of all non-negative𝜎-finite
measures on (𝐸, E) and M𝑟 (𝐸) the set of all non-negative 𝜎-finite measures on (𝐸, E) that are inner
regular and locally finite. The set M𝑟 (𝐸) is known as the set of Radon (non-negative) measures on
𝐸 . We then respectively define the sets of all finite measures on (𝐸, E), the set of all subprobability
measures on (𝐸, E), the set of all pure subprobability measures on (𝐸, E), and the set of all probability
measures on (𝐸, E) by M 𝑓 (𝐸) = {𝜇 ∈ M(𝐸) : 𝜇(𝐸) < ∞}, M≤1(𝐸) = {𝜇 ∈ M(𝐸) : 𝜇(𝐸) ≤ 1},
M<1(𝐸) = {𝜇 ∈ M(𝐸) : 𝜇(𝐸) < 1}, and M1(𝐸) = {𝜇 ∈ M(𝐸) : 𝜇(𝐸) = 1}. It can be
proved that: if 𝐸 is Polish, then M 𝑓 (𝐸) ⊆ M𝑟 (𝐸); if 𝐸 is locally compact and separable, then
M 𝑓 (𝐸) ⊆ M𝑟 (𝐸).

Definition 2 (Weak Convergence). Let 𝐸 be a metric space. Let (𝜇𝑛)𝑛∈N be a sequence of measures
in M 𝑓 (𝐸) and 𝜇 ∈ M 𝑓 (𝐸). The sequence (𝜇𝑛)𝑛∈N is said to converge weakly to 𝜇 if∫

𝑓 𝑑𝜇𝑛 −−−−→
𝑛→∞

∫
𝑓 𝑑𝜇 for all 𝑓 ∈ 𝐶𝑏 (𝐸).

Definition 3 (Vague Convergence). Let 𝐸 be a locally compact metric space. Let (𝜇𝑛)𝑛∈N be a
sequence of measures in M𝑟 (𝐸) and 𝜇 ∈ M𝑟 (𝐸). The sequence (𝜇𝑛)𝑛∈N is said to converge vaguely
to 𝜇 if ∫

𝑓 𝑑𝜇𝑛 −−−−→
𝑛→∞

∫
𝑓 𝑑𝜇 for all 𝑓 ∈ 𝐶𝑐 (𝐸).

Lemma A.1. If 𝐸 is a locally compact separable metric space, then M≤1(𝐸) is vaguely compact.
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Proof. Under separablity, finite measures are Radon. Then apply Corollary 31.3. in Bauer (2011)
(p.206) to guarantee vague sequential compactness and Theorem 31.5 in Bauer (2011) (p.208) to
ensure metrizability of vague convergence. □

Lemma A.2. Let Θ be a locally compact separable metric space. If P ⊆ M1(Θ) is closed in the
vague topology, then P is weakly compact.

Proof. Since P is vaguely closed, it is vaguely compact by Lemma A.1 and metrizability of vague
convergence. Let (𝜇𝑛) be any sequence in P . Then, by sequential compactness, (𝜇𝑛) has a vaguely
convergent subsequence inP . Then the conclusion follows from Theorem 3.8 in Bauer (2011) (p.196)
under separability of Θ (which also guarantees the metrizability of weak convergence). □

Lemma A.3. Let Θ be a metric space and (𝑋,A, 𝜇) an arbitrary measure space. If 𝑓 : 𝑋 × Θ → R
is a nonnegative function such that:

1. for all 𝜃 ∈ Θ, 𝑥 ↦→ 𝑓 (𝑥, 𝜃) is A-measurable;
2. for all 𝑥 ∈ 𝑋 , 𝜃 ↦→ 𝑓 (𝑥, 𝜃) is lower semicontinuous;

then the function defined on Θ by 𝜃 ↦→
∫
𝑓 (𝑥, 𝜃) 𝑑𝜇(𝑥) is lower semicontinuous.

Proof. This follows directly from Fatou’s lemma. Indeed, if 𝜃𝑛 → 𝜃0, then for all 𝑥 ∈ 𝑋 ,∫
𝑓 (𝜃0, 𝑥) 𝑑𝜇(𝑥) ≤

∫
lim inf
𝑛→∞

𝑓 (𝜃𝑛, 𝑥) ≤ lim inf
𝑛→∞

∫
𝑓 (𝜃𝑛, 𝑥),

where the first inequality follows from lower semicontinuity of 𝑓 (𝑥, ·) and monotonicity of the
integral, and the second from Fatou’s lemma. □

Lemma A.4. Let 𝑝 ≥ 1 ans {𝜇𝑖} ⊆ M1(R) a family of probability measures for which there is some
𝑀 ∈ R such that

∫
R
|𝑥 |𝑝 𝑑𝜇𝑖 (𝑥) ≤ 𝑀 for all 𝑖. Then {𝜇𝑖} is tight.

Proof. Since |𝑥 | ≤ 1 + |𝑥 |𝑝, we have
∫
R
|𝑥 | 𝑑𝜇𝑖 (𝑥) ≤ 1 + 𝑀 by monotonicity of the integral. By

Markov’s inequality, we have for any 𝐾 > 0,

𝜇𝑖 (R \ [−𝐾, 𝐾]) ≤
∫
R
|𝑥 | 𝑑𝜇𝑖 (𝑥)
𝐾

≤ 1 + 𝑀
𝐾

.

This concludes the proof by taking 𝐾 large enough. □

Appendix B A (weak) existence result in the vague topology

Proposition B.1. Let ((X ,BX ), {𝑃𝜃 : 𝜃 ∈ Θ}, (A,BA), 𝐿) be a regular statistical decision problem.
Suppose that the parameter space Θ is a locally compact separable metric space. Let D0 ⊆ D be a
set of decision rules for the statistical decision problem. Let P be a set of probability measures on
(Θ,BΘ). Suppose that

1. for each 𝜃, the loss 𝐿 is lower semicontinuous in 𝑎;
2. the Bayes risk function 𝜋 ↦→ inf 𝛿 𝐵(𝛿, 𝜋) is vaguely upper semicontinuous on P̄;
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3. the closure P̄ of the set P in the space of subprobability measures endowed with the vague
topology is convex;

4. the set D0 is closed and convex as a subset of D endowed with the weak topology.
Then there exists a pair (𝛿∗, 𝜋∗) ∈ D0 × P̄ such that

𝐵(𝛿∗, 𝜋∗) = inf
𝛿∈D0

sup
𝜋∈P̄

𝐵(𝛿, 𝜋) = sup
𝜋∈P̄

inf
𝛿∈D0

𝐵(𝛿, 𝜋).

and that (𝛿∗, 𝜋∗) is a saddle point in the sense that

𝐵(𝛿∗, 𝜋) ≤ 𝐵(𝛿∗, 𝜋∗) ≤ 𝐵(𝛿, 𝜋∗)

for all 𝛿 ∈ D0 and all 𝜋 ∈ P̄ .

Proof. By linearity of the space of finite measures, the integrated risk 𝐵 is linear in 𝜋 for each 𝛿 ∈ D0.
Moreover,

𝑟 (𝛿, 𝜃) = sup
𝑐∈C (A)

{𝑏 𝛿 ( 𝑓𝜃 , 𝑐) : 𝑐 ≤ 𝐿 𝜃 },

hence 𝑟 is convex in 𝛿 for each 𝜃 ∈ Θ, and so the integrated risk 𝐵 is convex in 𝛿 for each 𝜃 ∈ Θ. By
assumption, P̄ is convex and D0 is convex and closed. By Lemma 1.1, D is compact and so D0 is
compact. It thus follows from Kneser’s minimax theorem that

inf
𝛿∈D0

sup
𝜋∈P̄

𝐵(𝛿, 𝜋) = sup
𝜋∈P̄

inf
𝛿∈D0

𝐵(𝛿, 𝜋).

The set M≤1(Θ) of subprobability measures on Θ endowed with the vague topology is compact
under separability of Θ (see Lemma A.1), hence P̄ is vaguely compact due to metrizability of
vague convergence. By assumption, 𝜋 ↦→ inf 𝛿 𝐵(𝛿, 𝜋) is vaguely upper semicontinuous, hence
the supremum on the right-hand side is attained. Denote 𝜋∗ ∈ P̄ the distribution that attains this
supremum, that is,

sup
𝜋∈P̄

inf
𝛿∈D0

𝐵(𝛿, 𝜋) = inf
𝛿∈D0

𝐵(𝛿, 𝜋∗)

The proof of 1.2 can be extended to any finite measure using Lemma A.3, and in particular for
P̄ ⊆ M<1(Θ). It follows that 𝛿 ↦→ 𝐵(𝛿, 𝜋) is lower semicontinuous for each 𝜋 ∈ P̄ , and in particular
for 𝜋∗ ∈ P̄ . SinceD0 is compact, the infimum on the right-hand side is also attained for some 𝛿′ ∈ D0.
Therefore, there exists a pair (𝛿′, 𝜋∗) ∈ D0 × P̄ such that

𝐵(𝛿′, 𝜋∗) = inf
𝛿∈D0

sup
𝜋∈P̄

𝐵(𝛿, 𝜋) = sup
𝜋∈P̄

inf
𝛿∈D0

𝐵(𝛿, 𝜋).

We now show that there exists 𝛿∗ ∈ D0 such that (𝛿∗, 𝜋∗) attains the minimax equality and is
also a saddle point. Since 𝛿 ↦→ 𝐵(𝛿, 𝜋) is lower semicontinuous for each 𝜋 ∈ P̄ , we have that
𝛿 ↦→ sup𝜋 𝐵(𝛿, 𝜋) is lower semicontinuous as the pointwise supremum of lower semicontinuous
functions. Since D0 is compact, the infimum on the left-hand side of the minimax equality is attained.
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We thus have
sup
𝜋∈P

𝐵(𝛿∗, 𝜋) = 𝐵(𝛿′, 𝜋∗)

for some 𝛿∗ ∈ D0. Then 𝐵(𝛿′, 𝜋∗) ≥ 𝐵(𝛿∗, 𝜋∗) ≥ inf 𝛿 𝐵(𝛿, 𝜋∗) = 𝐵(𝛿′, 𝜋∗), and so the supremum on
the left-hand side is also achieved for 𝜋∗. It follows that 𝐵(𝛿′, 𝜋∗) = 𝐵(𝛿∗, 𝜋∗) and

𝐵(𝛿∗, 𝜋∗) = 𝐵(𝛿′, 𝜋∗) = sup
𝜋∈P̄

𝐵(𝛿∗, 𝜋) = inf
𝛿∈D0

𝐵(𝛿, 𝜋∗),

which proves that (𝛿∗, 𝜋∗) is a saddle point that attains the minimax equality. □

Lemma B.2. Let Θ be a locally compact metric space. If 𝜋𝑛 converges vaguely to 𝜋 in M≤1(Θ),
then

lim inf
𝑛→∞

∫
𝑓 𝑑𝜋𝑛 ≥

∫
𝑓 𝑑𝜋

for every bounded from below, lower semicontinuous function 𝑓 : 𝐸 → R̄.

Proof. Suppose 𝜋𝑛 converges vaguely to 𝜋. Then by the portmanteau theorem for vague convergence,
we have

lim inf 𝜋𝑛 (𝑂) ≥ 𝜋(𝑂)

for all open sets 𝑂 ⊆ Θ. Since 𝑓 is assumed lower semicontinuous, it has open superlevel sets. Since
it is bounded from below by 0, we have that

∫
𝑓 (𝜃) 𝑑𝜋𝑛 (𝜃) =

∫ ∞
0 𝜋𝑛 ({𝜃 : 𝑓 (𝜃) > 𝑦}) 𝑑𝑦. Therefore,

lim inf
𝑛→∞

∫
𝑓 (𝜃) 𝑑𝜋𝑛 (𝜃) ≥

∫
𝑓 (𝜃) 𝑑𝜋.

□

Corollary B.3. Suppose the assumptions of Proposition B.1 hold. Suppose, moreover, that:
5. for each 𝛿 ∈ D0, the risk 𝑟 is lower semicontinuous in 𝜃;
6. the parameter space Θ is Polish.

Then there exists 𝜋′ ∈ P ⊆ M1(Θ) such that 𝐵(𝛿∗, 𝜋′) = 𝐵(𝛿∗, 𝜋∗) where (𝛿∗, 𝜋∗) ∈ D0 × P̄ is a
saddle point solution of the minimax equality whose existence is guaranteed by Proposition B.1.

Proof. If 𝜋∗ ∈ P , there is nothing to prove. Now take 𝜋∗ ∈ P̄ \ P . Since the vague topology
on M≤1(Θ) is metrizable under the assumptions on Θ (see Theorem 31.5 in Bauer (2011) and the
separability argument in Lemma A.1), there exists a sequence (𝜋𝑛) inP such that 𝜋𝑛 converge vaguely
to 𝜋∗. Since 𝑟 is lower semi-continuous in 𝜃 by assumption, we have lim inf𝑛→∞ 𝐵(𝛿, 𝜋𝑛) ≥ 𝐵(𝛿, 𝜋∗)
for each 𝛿 ∈ D0 by Lemma B.2. In particular, there is 𝑛 ∈ N such that 𝐵(𝛿∗, 𝜋𝑛) ≥ 𝐵(𝛿∗, 𝜋∗). Since
(𝛿∗, 𝜋∗) is a saddle point, we also have 𝐵(𝛿∗, 𝜋𝑛) ≤ 𝐵(𝛿∗, 𝜋∗). Thus 𝐵(𝛿∗, 𝜋𝑛) = 𝐵(𝛿∗, 𝜋∗) and
𝜋𝑛 ∈ P , which proves the claim by taking 𝜋′ = 𝜋𝑛. □
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