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Many statistical models are framed in terms of unobservable random variables for which
no realizations are ever accessible. These include, for instance, measurement error models,
structural econometric models with unobserved heterogeneity, and causal models with poten-
tial outcomes. All these models derive from a generic class of problems – inverse problems
– whose main features are delineated in this paper. Our discussion helps clarify a number of
issues that stem from unobservability and, notably, problems of identification. More impor-
tantly, it makes clear that it is the presence of unobservables that confers to these models any
explanatory power while, at the same time, severs them largely from empirical support. By
contrast, we show that all statistical models where unobservables play no role are completely
propped up by the data but are, as a consequence, unable of supporting any explanation. They
can be seen as tackling the simpler task of description that consists in assigning a distribution
to realizations of it. This principled difference between statistical models helps make clear
that unobservables are the fundamental entities that link data to scientific theories.
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1 Introduction

A distinctive feature of many statistical models used in the physical and social sciences is that
they include unobservable random variables. This means that, when these models are framed as
parametrized family of measures {𝑃𝜃 : 𝜃 ∈ Θ} where 𝜃0 ∈ Θ is the true unknown parameter
to be recovered, one can never directly sample from 𝑃𝜃0 . In other words, the recovery of 𝜃0 is
necessarily indirect and call for extra information not contained in the data at hand. This way of
statistical modeling is extremely common in applications. We illustrate this prevalence in the next
examples where we introduce three models from recently published papers in which unobservables
feature prominently: a measurement error model in Hu, Schennach, and Shiu (2022), a structural
econometric model with unobserved heterogeneity in Moon, Shum, and Weidner (2018), and a
causal inference model in Lei and Candès (2021).

Example 1.1 (Hu, Schennach, and Shiu (2022)). The paper by Hu, Schennach, and Shiu considers
a non-parametric monotonic regression model with measurement error in the regressor. In their
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notation, the model reads as

𝑌 = 𝑚0(𝑋∗) + 𝜂 ,

𝑋 = 𝑋∗ + 𝜀 ,

where 𝑚0(·) is an unknown function assumed monotonic and 𝑌, 𝑋, 𝑋∗, 𝜂, and 𝜀 are real-valued
random variables. The variables 𝑋∗, 𝜂, and 𝜀 are assumed unobservable in the sense that no
realizations of them can be accessed. The variables 𝑋 and 𝑌 are the only observable ones: all the
available data for the problem is (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛) and is construed as an i.i.d. sample
drawn from the joint distribution 𝑃𝑋,𝑌 of (𝑋,𝑌 ). The objective set by the authors is then to recover
the function 𝑚0(·) from the available data. The resulting statistical problem and its dependence
on the unobservables will be made clear in Appendix C.1. The interpretation of the model, and
notably the interpretation of 𝜀 as measurement error and 𝜂 as a random factor in the decomposition
of 𝑌 in terms of 𝑋∗, will be made explicit in Appendix D.1.

Example 1.2 (Moon, Shum, and Weidner (2018)). The paper by Moon, Shum, and Weidner
considers a random coefficients logit demand model with interactive fixed effects. In their notation
(slightly amended for consistency), the model reads as

𝛿 𝑗𝑡 = 𝑋
′
𝑗𝑡 𝛽

0 + 𝜆0′
𝑗 𝑓

0
𝑡 + 𝑒 𝑗𝑡 ,

𝑆 𝑗𝑡 =

∫
𝜋(𝛿𝑡 , 𝑋𝑡 , 𝑣) 𝑑𝐺 (𝑣;𝛼0),

for all 𝑗 = 1, 2, . . . , 𝐽 and all 𝑡 = 1, 2, . . . , 𝑇 where

𝜋(𝛿𝑡 , 𝑋𝑡 , 𝑣) =
exp(𝛿 𝑗𝑡 + 𝑋 ′

𝑗𝑡
𝑣)

1 +
∑𝐽
𝑙=1 exp(𝛿𝑙𝑡 + 𝑋 ′

𝑙𝑡
𝑣)
,

and 𝐺 is a known distribution up to 𝛼0. The values 𝛼0, 𝛽0 = (𝛽0
1, . . . , 𝛽

0
𝐾
),

𝜆0 = ((𝜆0
𝑗𝑟
) 𝑗=1,...,𝐽 )𝑟=1,...,𝑅, and 𝑓 0 = (( 𝑓 0

𝑡𝑟 )𝑡=1,...,𝑇 )𝑟=1,...,𝑅 in R𝐿 ,R𝐾 ,R𝐽×𝑅, and
R𝑇×𝑅 are taken as unknown parameters for the problem. The observables are the
random variables 𝑋 = (((𝑋𝑘 𝑗𝑡 )𝑘=1,...,𝐾 ) 𝑗=1,...,𝐽 )𝑡=1,...,𝑇 , 𝑆 = ((𝑆 𝑗𝑡 ) 𝑗=1,...,𝐽 )𝑡=1,...,𝑇 and
𝑍 = (((𝑍𝑚𝑗𝑡 )𝑚=1,...,𝑀 ) 𝑗=1,...,𝐽 )𝑡=1,...,𝑇 taking values inR𝐾×𝐽×𝑇 , R𝐽×𝑇 , andR𝑀×𝐽×𝑇 , respectively.
The unobservables are the random variables ((𝑒 𝑗𝑡 ) 𝑗=1,...,𝐽 )𝑡=1,...,𝑇 ) and ((𝛿 𝑗𝑡 ) 𝑗=1,...,𝐽 )𝑡=1,...,𝑇

both taking values in R𝐽×𝑇 . The only available data for the problem is thus the vec-
tor ((((𝑥𝑘 𝑗𝑡 )𝑘=1,...,𝐾 ) 𝑗=1,...,𝐽 )𝑡=1,...,𝑇 , ((𝑠 𝑗𝑡 ) 𝑗=1,...,𝐽 )𝑡=1,...,𝑇 , (((𝑧𝑚𝑗𝑡 )𝑚=1,...,𝑀 ) 𝑗=1,...,𝐽 )𝑡=1,...,𝑇 ),
which is construed as a sample of size 1 from the joint distribution 𝑃𝑋,𝑆,𝑍 of (𝑋, 𝑆, 𝑍). The object
of interest is chosen by the authors as the vector (𝛼0, 𝛽0, 𝜆0 𝑓 0′ , 𝑃𝑒,𝑋,𝑍 ) where 𝑃𝑒,𝑋,𝑍 is the joint
distribution of 𝑒, 𝑋 , and 𝑍 . The resulting statistical problem and its dependence on unobservables
will be made explicit in Appendix C.2. The interpretation of the model as capturing aggregate
market-level demand will be made clear in Appendix D.2.
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Example 1.3 (Lei and Candès (2021)). The paper by Lei and Candès considers a standard model
for causal inference, known as the Neyman–Rubin potential outcome model, under a binary
treatment. For some random variables 𝑌,𝑌 (1), 𝑌 (0), 𝑇 and 𝑋 taking values in R,R,R, {0, 1}, and
R𝑑 , respectively, the model reads as

𝑌 =


𝑌 (1) if 𝑇 = 1 ,

𝑌 (0) if 𝑇 = 0 ;

which rewrites in a more functional form as

𝑌 = 𝑌 (1)𝑇 + 𝑌 (0) (1 − 𝑇).

The variables 𝑋 , 𝑌 , and 𝑇 are assumed observable whereas the variables 𝑌 (1) and 𝑌 (0) are
not. The only available data for the problem is then (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖)𝑖=1,2,...,𝑛 and is construed as an
i.i.d. sample drawn from the joint distribution 𝑃𝑋,𝑌 ,𝑇 of (𝑋,𝑌, 𝑇). The authors are primarily
interested in the random variable 𝜏 = 𝑌 (1) − 𝑌 (0) which they refer to as the individual treatment
effect. The resulting statistical problem and its dependence on unobservables will be made clear
in Appendix C.3. The interpretation of the model as causal, and in particular the interpretation of
the unobservables 𝑌 (1) and 𝑌 (0) as potential outcomes, will be made explicit in Appendix D.3.

The natural question that follows is: why would a statistician or an econometrician tie one’s
hands by working with a probability distribution that is impossible to sample from? The answer
to that question is the object of this paper. Our main claim is that unobservables are what
allow practitioners to link data to a field-specific theory in what forms, in fine, an empirically-
supported explanation. They are the necessary bridge that allows scientists to leverage the full
statistical apparatus of inference to bring data into a theoretical model. In other words, without
unobservables, no empirically-supported explanation. However, this comes at a cost: the additional
information that propels the data into an explanatory model is severed from empirical support. This
is completely and intuitively captured by the nature of unobservables as entities that cannot be
observed. This also implies that unobservables, and the stochastic model they sustain, come after
an a priori theoretical frame that confers to them a specific field-dependent meaning – we call
this the theory-ladenness of unobservables. It follows that statisticians and econometricians do
not so much tie their hands when they work with unobservables and probability distributions they
cannot directly sample from, but open data and statistical tools to a wide range of new problems
(as demonstrated by the examples above). The cost to pay is that of an unavoidable "leap of faith"
from what can be observed to an underlying explanation that cannot be completely supported by
empirical means. To show this as clearly as possible, we isolate a simple structure that sustains all
statistical models with unobservables. This structure helps formalize the notion of inverse problems
in statistics and simplify a number of fundamental questions traditionally faced by practitioners
when working with unobservables – and notably the problem of identification.

The widespread use of statistical models with unobservables then brings forth a natural question:
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Are all statistical models of this form? It is hard not to answer an emphatic "no" to that question
by directly considering one of the simplest inferential problems – non-parametric mean estimation
using a set of observations. If this question has an easy answer, it is less clear how to interpret
all the statistical models that only include observable random variables, especially in light of our
claim that explanations suppose theory-laden unobservables. To make progress on this problem,
we exhibit a very simple structure that concisely captures the task a statistician performs when
using such statistical models. The idea is that, when limiting oneself to observable quantities
only, the sole task left is to assign a plausible distribution for the random phenomenon from which
the observations were obtained. This simple act of associating a distribution to its realizations
delineates a descriptive task that does not involve any "leap of faith": any a priori assumption
about the distribution to facilitate inference can always be confronted with the data. The cost of
this streamlined process is that inference cannot go beyond the observables: what is obtained is
a description whose interpretation directly derives from the meaning assigned to the observables.
While this descriptive task could directly start from a parametrized statistical model, we believe
that there is value in exhibiting a structure that stands behind any parametrization. We show, in
particular, that taking the observable distributions as logically anterior to any parametrized sets
helps clarify a number of issues in model-based inferential problems that only include observables.

The rest of the paper is constructed as follows. We start in Section 2 by clarifying how our
discussion fits into the broader statistical and econometric literature. We then tackle statistical
models that only feature observables in Section 3 and finally move to the core of the paper in
Section 4 where we handle statistical models with unobservables. We should revisit the examples
introduced above in Appendix C and Appendix D. For the sake of exposition, we will also
introduce a set of elementary statistical problems whose purpose is to contrast the different modeling
approaches. These examples are collected in Appendix A and Appendix B.

2 Literature review

The majority of statistical models considered in statistical textbooks only include observable
random variables. This is true independently of the era, school, and inferential paradigm – see,
e.g., Ferguson (1967), Berger (1985), Lehmann and Casella (1998), Robert (2007), Shao (2008)
for a small sample. In these textbooks, statistical problems are introduced through a parametrized
family of probability measures {𝑃𝜃 : 𝜃 ∈ Θ} with a true unknown parameter 𝜃0 to be recovered
and the hypothesis that one can directly sample from 𝑃𝜃0 finitely many times. It is only for more
complex problems that an uneasy confrontation with unobservable variables can be observed – this
confrontation is never formalized and never clearly interpreted. The first problems that generate
such a confrontation are usually regression models and, more rarely, missing data models.

The state of affair is different in econometrics where models with unobservable random vari-
ables occupy a central position. This prevalence seems mostly due to the fact that many statistical
problems considered in the field have for origin a preliminary economic model whose main com-
ponents are theoretical and not directly measurable. However, a full investigation of the difference
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between statistical models without unobservables and statistical with unobservables has never been
carried out from first principles. The field has favored solving more practical questions directly
implied by unobservability. Indeed, the main challenge for econometricians has been to find ways
to circumvent unobservables and recover classical statistical problems so that the standard tools,
language, and techniques of statistical inference could be leveraged without modification. This
has led the field to focus on the problem of identification, paving the way for a broad and general
solution stated in the traditional language of statistics – see, for instance, Matzkin (2007) for an au-
thoritative presentation where problems with unobservables are formalized through parametrized
families for the observable distributions and identification is traditionally defined as a property of
the parametrization.

These formalization exercises have been intertwined with the development of a subfield of
statistics and econometrics whose focus has been the study of inverse problems – see, e.g., Cavalier
(2011), Florens and Simoni (2017), Schennach (2020). Inverse problems in statistics have for
origin inverse problems in physics for which the final deterministic states are observed with noise:
the objective is thus to find 𝑓 ∈ 𝐹 such that 𝐴( 𝑓 ) = 𝑔 where 𝐴 is a known operator and 𝑔 is
known up to some stochastic disturbance1. This origin, however, does not capture the diversity
of inverse problems considered in statistics and econometrics that are, in the words of Cavalier
(2011), all "[t]hese are problems where we have indirect observations of an object [...] that we want
to reconstruct". We show in this paper that it is possible to delineate a simple structure that covers
all these problems, independently of their connection to a deterministic inverse problem. This
structure is relatively simple and originates from constraining a coupling between the observables’
distribution and the unobservables’ distribution. It naturally bears resemblance to the construction
in Matzkin (2007) – the main difference comes from re-ordering the construction by taking the
joint distribution of the observables and the unobservables as a starting point. This makes clear, in
particular, that the parametrization of the problem is unnecessary. More importantly, this allows
us to simplify the problem of identification and unify all problems with unobservables as inverse
problems. It also makes clear that the idea of inversion in statistics does not come from inverting
an operator but from "undoing" the effects of unobservable processes – as clearly perceived in
Giné and Nickl (2021) pp. 3-4 or in Schennach (2020) p. 489. This "undoing" is nothing more
than solving the identification problem.

The goal of this paper is not simply to formalize inverse problems but to make clear the trade-
off that unobservables entail in statistical models. This question has been partly ignored in the
literature as statisticians and econometricians vied for the safe harbor of statistical models under
complete observability once identification was resolved. Even the best accounts on unobservables
in the field – Matzkin (2007) or Schennach (2020) – do not make explicit what is gained and what
is lost by assuming more than observables. To make progress on this front, we are invited to go
to the other side and interpret these models that only include observable random variables. This

1This is originally the approach that has been used by physical scientists when connecting physical inverse problems
to statistical problems – see, for instance, Evans and Stark (2002), Tarantola (2005), Aster, Borchers, and Thurber (2018)
going as far back as Sudakovand and Khalfin (1964).
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question has been partly passed over due to the conceptual simplicity of these models: their nature
and interpretation derive directly from the capacity to sample from a certain distribution. We make
this explicit by introducing what we call forward problems where the descriptive nature of the task
is contrasted with that in inverse problems. A different attempt at formalizing similar ideas can
be found in Evans and Stark (2002) but the authors only ever define forward problems in statistics
in terms of parametrized statistical models (hence begging the question as to the origin of such
models). The forward structure we suggest in this paper makes a case for the logical precedence
of measures as complete descriptions for observations before any attempt at parametrization.

More generally, we grapple in this paper with the existence of different tasks within statis-
tics. Naturally, we are not the first one to face the issue. The idea of a fundamental difference
between statistical models lays latent in the diversity of statistical applications. Several papers
have tried to explicitly characterize this difference and offer support for one or another position.
The most influential contribution in this direction is without contest the "two cultures" paper of
Leo Breiman (Breiman (2001)). The author identifies two tasks within statistics, "prediction" and
"information [extraction]", and two criteria to judge statistical results, "prediction accuracy" and
"interpretability", and then compares the "data modeling culture" and the "algorithmic modeling
culture" to serve these objectives. Breiman, however, remains mostly silent about the meaning
of "information [extraction]" and "interpretability" (due to its legitimate attraction to prediction
as queen and servant of statistics). Our paper can be understood as showing that "information
[extraction]" takes at least two distinct forms, description and explanation, and that the difference
between these two tasks stem from the role played by unobservables. As far as we know, we are
the first one to confront so directly the question of the nature of "information [extraction]" within
statistics. This discussion naturally fits in a larger epistemological literature where the distinction
has been amply considered – see, for instance, Woodward and Ross (2021) and the references
therein – in particular, Van Fraassen (1980).

Finally, this paper contributes to a larger literature on the foundations of statistics, the nature
of statistical models, and the role of statistics in the sciences that has accompanied the field since
its inception. These foundational discussions – Fisher (1922, 1925, 1935), Neyman (1952, 1976,
1977), Box (1976), Lehmann (1990), Cox (1990) to only name a few – have not only led to a
number of famed aphorisms but have directly oriented statistical practices in fundamental ways.
Some particular traits of models with unobservables have motivated a number of discussions closer
to ours – see, notably, Mayo (1997) and Spanos and Mayo (2015) where the need to differentiate
a "statistical model" from a "substantive model" and the risk of "foisting [a] substantive model on
the data" are clearly identified. Our discussion leads to sensibly similar advisory remarks. We
believe, however, that the role that unobservables play in statistical models deserves more attention.
The problem is not simply that of recognizing the difference between an unidentified model with
unobservables and a probability distribution one can sample from. It is, above all, to recognize
what one gains when working with unobservables – an empirically-supported explanation – and
what one has to pay for that – the impossibility to completely falsify the explanation. While there
is a room to improve on the explanation by looking at the implied probability distribution on the
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observables, there is a fundamental limit in this exercise (beyond the need of strong parametric
assumptions and the restriction to simple problems) that comes from the nature of observables
itself. Thereafter, our goal is not so much to devise techniques to test when one is "foisting [a]
substantive model on the data", but to make clear the impossibility of doing so. This impossibility
is not in vain as it is the minimal price to pay to bridge data and scientific theories. Our discussion
also suggests that the best way to make sure one is not "foisting [a] substantive model on the data"
is to pay full attention to the unobservables (and the probabilistic assumptions one put on them)
in light of a preliminary field-dependent theoretical bedrock. This focus is notably motivated
by the (re)emergence of causal inference as a prominent statistical problem where "empirical
adequacy" is a very limited guide due to the central position of unobservables in this case. This
problem and its successes, where most of the assumptions come from a priori discussions on
the unobservables’ inherent properties without empirical support, partly challenges the anti-realist
picture of Van Fraassen (1980) from within statistics. We will leave, however, a full exploration of
these philosophical consequences to future research.

3 Description: an upper bound for observables

Before exploring the role of unobservables in depth, we make a preliminary step and first
confront these statistical models where unobservables are absent. The purpose of this detour
is to prepare the ground for the next section where the nature of unobservables will be easier
to pin down by contrast. The task is, however, of interest in itself: statistical models that only
include observables come first and are widespread in applications but are often left without a clear
interpretation. The following discussion helps make clear what complete observability implies.

All statistical models that only include observable random variables have the same irreducible
structure: the available data 𝑥1, 𝑥2, . . . , 𝑥𝑛 is construed as the realizations of some random variables
𝑋1, 𝑋2, . . . , 𝑋𝑛 that are assumed independent and identically distributed (i.i.d.) according to an
unknown probability measure 𝑃𝑋. It is the assumption that one has access to the realizations
𝑥1, 𝑥2, . . . , 𝑥𝑛 that make the random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 observable. In other words, complete
observability means that one can directly sample from some distribution 𝑃𝑋 finitely many times.

Remark 3.1. This formulation includes cases with dependence and distributional-shift by taking
𝑛 = 1 and 𝑋1 a random vector whose𝑚-components are sampled according to the joint distribution
𝑃𝑋. Because of this, we should directly work under a general i.i.d. formulation where dependent
samples are construed as draw of size 1 from a given multivariate distribution.

While complete observability makes inference a concise problem, it comes at a cost: inference
cannot go beyond what is observable. Indeed, given the structure above, there is no other statistical
problem than to gain information on 𝑃𝑋 from the sample 𝑥1, 𝑥2, . . . , 𝑥𝑛 where 𝑃𝑋 has a fixed
interpretation as the distribution of some observable phenomenon. In predicating a distribution
to some observations, the modeler can be seen as providing a complete description of the random
phenomenon that generated them. In other words, when all the variables making up a statistical
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problem are observable, the most one can do is to find their distribution: there is nowhere to
go beyond what is observable. The advantage of this observational constraint is that the task is
completely supported by the data 𝑥1, 𝑥2, . . . , 𝑥𝑛 at hand in the sense that any preliminary assumption
on 𝑃𝑋, as well as the sampling assumption, can be empirically falsified by statistical means – we
call this empirical closure. The outcome of this procedure is an empirically-closed description
that consists in the recovery of 𝑃𝑋 from 𝑥1, 𝑥2, . . . , 𝑥𝑛 whose meaning completely derives from the
observability of the random phenomenon common to 𝑋1, 𝑋2, . . . , 𝑋𝑛.

To make this point as clearly as possible, we err on the side of caution and break statistical
models under complete observability down into digestible bits. We do so because models that only
include observables are traditionally introduced as parametrized families of probability measures
{𝑃𝜃 : 𝜃 ∈ Θ} where it is assumed that one can sample directly from the true unknown distribution
𝑃𝜃0 finitely many times to recover 𝜃0 ∈ Θ. The risk is that the parametrization is not logically
preliminary and may erroneously suggest that, even under complete observability, one may do
more than recover the observable distribution 𝑃𝜃0 , that is, obtain more than a simple description.
By remembering that an indexed family of probability measures {𝑃𝜃 : 𝜃 ∈ Θ} always supposes
the existence of an unindexed family of measures P , an index set Θ, and a surjective function
𝐼 : Θ → P called index map, it is possible to decompose statistical models under complete
observability as the successive choice of:

1. a set of probability measures P that is supposed to contain 𝑃𝑋: this delineates the range of
possible descriptions for the phenomenon under study;

2. a well-defined function 𝑓 : P → 𝐸 where 𝐸 is an arbitrary set: this restricts the quantity
and type of information that should be considered for any description.

The resulting statistical task is then the recovery of 𝑓 (𝑃𝑋) from the data 𝑥1, 𝑥2, . . . , 𝑥𝑛 which is
construed as an i.i.d. sample from 𝑃𝑋. For ease of reference, we collect this decomposition in the
following definition where the terminology follows from Remark 3.3 below.

Definition 3.1 (Forward Problem). A forward problem for a distribution 𝑃𝑋, which can be sampled
from, is a pair (P , 𝑓 ) where:

1. P is a set of probability measures such that 𝑃𝑋 ∈ P , and;
2. 𝑓 : P → 𝐸 is a function for some arbitrary set 𝐸 .

The decomposition of statistical problems under complete observability through forward prob-
lems helps make clear their descriptive limit: the first-best solution is always the recovery of 𝑃𝑋
which would completely describe the observable random phenomenon 𝑋; because recovering 𝑃𝑋
may be statistically challenging, it is common to consider a sub-problem of lesser difficulty by
focusing on 𝑓 (𝑃𝑋); the recovery of 𝑓 (𝑃𝑋) then provides a partial description of the phenomenon
𝑋 . The choice of (P , 𝑓 ) thus always captures a certain trade-off between the difficulty of the
statistical problem and the completeness of the intended description for 𝑋 .

We illustrate in Appendix A the applicability of this decomposition by breaking down five
standard statistical problems that only include observables. These examples further demonstrate
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the descriptive upper limit of statistical problems under complete observability. They also support
the precedence of measures as descriptions for observations before any attempt at parametrization.
We generalize these points in the following remarks. In particular, we show that:

• a forward problem always induces a parametrized statistical model – see Remark 3.2;

• identification is not a problem under complete observability – see Remark 3.3;

• the condition 𝑃𝑋 ∈ P is always testable yielding empirical closure – see Remark 3.4;

• the decomposition of statistical models for observables as forward problems offers a simple
way to order these models – see Remark 3.5;

• sampling is an important modeling choice that always bears on the descriptive scope of the
resulting forward problem – see Remark 3.6.

Remark 3.2. A forward problem (P , 𝑓 ) for 𝑃𝑋 indirectly induces a statistical model for 𝑃𝑋 in
the sense of a parametrized family of measures containing 𝑃𝑋. It is obtained by considering
{𝑃𝜃 ∈ P : 𝜃 ∈ Θ} where Θ = 𝑓 (P) = 𝐸 and 𝜃0 = 𝑓 (𝑃𝑋). It is important to note, however,
that the parametrization is not necessarily a valid parametrization for the original set P since the
induced index relation 𝜃 = 𝑓 (𝑃) ↦→ 𝑃 is not necessarily a valid mapping from Θ to P (as some
image may have several preimages). It is the case only when 𝑓 is a bĳective function (which
is not guaranteed for many problems of interest). When 𝑓 is not bĳective, the parametrization
implies the existence of an unindexed set P ′ of measures strictly contained in P for which the
parametrization holds. It hence follows that {𝑃𝜃 ∈ P : 𝜃 ∈ Θ} may not be exactly the same
structure as (P , 𝑓 ). However, the difference is mild since the statistical task of gaining knowledge
on 𝑓 (𝑃𝑋) = 𝜃0 remains identical. The main issue is different and follows from the fact that,
in absence of a forward problem, it is unclear how to come up with well-behaved parametrized
families like {𝑃𝜃 ∈ P ′ : 𝜃 ∈ Θ} for some potential set P ′ beyond simple problems with natural
bĳective parametrizations. This suggests that, practically and logically, parametrized statistical
models under complete observability are always the result of some forward problems.

Remark 3.3. The notion of identification can be defined for indexed statistical models where the
object of inference is the indexing parameter: namely, an indexed statistical model {𝑃𝜃 : 𝜃 ∈ Θ}
with inferential object of interest 𝜃 is said to be identifiable if the map 𝜃 ↦→ 𝑃𝜃 is injective. We
show that an inferential problem with explicit forward structure (P , 𝑓 ) never leads to problems
of identification. First, if P is not indexed, there is no problem of identification. If P is indexed,
the index either plays no role or is selected as the object of inference through 𝑓 , but if it is selected
through the choice of 𝑓 , it is de facto identified as the map 𝜃 ↦→ 𝑃𝜃 is injective due to the fact that
𝑓 has to be a well-defined function. This result can be alternatively obtained by considering the
induced statistical model {𝑃𝜃 ∈ P : 𝜃 ∈ Θ} where Θ = 𝑓 (P) = 𝐸 with implied unindexed set
P ′ ⊆ P: the index map 𝐼 : Θ → P ′, 𝜃 = 𝑓 (𝑃) ↦→ 𝑃 is always injective since 𝑓 is a function
and Θ = 𝑓 (P) = 𝑓 (P ′). The absence of identification issues in forward problems is the direct
manifestation that statistical models with observables are empirically closed.
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Remark 3.4. The problem of specification in statistical models under complete observability
corresponds exactly to the choice of the set P in some forward problem (P , 𝑓 ). Indeed, a
statistical model for 𝑃𝑋 is well-specified if the condition 𝑃𝑋 ∈ P is satisfied. The correct
specification of a model entirely captures the validity of the resulting descriptions in the sense that
uncertainty quantification around an estimate of 𝑓 (𝑃𝑋) can then be interpreted as measuring the
plausibility of this description. Due to complete observability, specification is a problem that is, in
principle at least, always possible to empirically support – this is what we call empirical closure.
One practical solution to ensure specification is to split the observations into two sets where the
specification’s correctness is assessed on the first part and inference is performed on the second
part. Such a procedure presents a number of technical challenges from a statistical viewpoint, but
it remains feasible, at least in principle, in all models that only include observables.

Remark 3.5. The decomposition of statistical models under complete observability into forward
problems leads to a simple way to order and compare such models. We introduce an equivalence
relation and an ordering, which are illustrated through the four first examples of Appendix A.

• Two forward problems (P , 𝑓 ) and (P ′, 𝑓 ′) are said to be in the same class if P = P ′.
Problems in the same class thus consider the same possible distributions for the observables.
They only differ in the parts of the observables’ distribution they aim to recover. This
is captured by the possible difference between 𝑓 and 𝑓 ′. All problems in the same class
would be solved if the unknown distribution of the observables could be perfectly recovered.
The difficulty of inference for problems in the same class then depends exclusively on the
complexity of 𝑓 (P) and 𝑓 ′(P). This is illustrated by the problems of linear regression and
non-parametric regressions of Examples A.4 and A.3: the two problems are seen to belong
to the same class where P is the set of distributions on R2 with finite second moments.

• A forward problem (P ′, 𝑓 ′) is said to be a sub-problem of another forward problem (P , 𝑓 )
if P ′ ⊂ P and if 𝑓 ′ is the restriction of 𝑓 to P ′. In other words, a sub-problem considers
a simpler inferential problem by restricting the set of possible distributions to be considered.
The difficulty of inference is then directly captured by the complexity of the sets P and P ′.
For instance, normal mean estimation as introduced in Example A.2 is directly seen to be a
sub-problem of non-parametric mean estimation as introduced in Example A.1.

Remark 3.6. Forward problems were introduced in Definition 3.1 under an i.i.d framework with
dependence and distributional-shift handled as a special case – see Remark 3.1. This simplification
should not hide the fact that sampling is a modeling assumption that bears directly on the descriptive
scope of the resulting forward problems. To make this explicit, it is always possible to redefine
forward problems for the joint distribution 𝑃𝑋1,...,𝑋𝑛

of the full sample (𝑋1, 𝑋2, . . . , 𝑋𝑛) rather
than for an hypothesized identical marginal 𝑃𝑋. In this case, the available data (𝑥1, 𝑥2, . . . , 𝑥𝑛) is
always construed as a sample of size 1 from 𝑃𝑋1,...,𝑋𝑛

. An i.i.d. assumption can then be seen as
the most restrictive hypothesis from the descriptive standpoint: it implies a joint distribution for
the full sample that is the most invariant possible as it simply corresponds to the product measure
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for a single identical marginal distribution. Any relaxation of the i.i.d. assumption thus extends
the range of possible descriptions, even if not explicitly clear from Definition 3.1. The importance
of the sampling choice as a descriptive constraint is discussed for the examples of Appendix A in
Remark A.3.

4 Explanation: the weight of unobservables

The previous section made clear that, under complete observability, any statistical task is
descriptive in nature: one cannot get more than the distribution of the random variables from
which one has collected observations. Epistemologically, however, one may want to get more from
statistics: in particular, one may want to use observations to recover something that is not directly
observable. This is exactly what is asked for in an explanation where observable processes are
made sense of by way of an underlying structure removed (both logically and practically) from
observability in what constitutes, in fine, a theoretical model or a scientific theory. Not surprisingly,
the statistical solution to this problem is to introduce unobservable random variables alongside
observable ones in a model that mirrors the theoretical one. It is the objective of this section to
make sense of this practice. Our discussion should make clear, in particular, that unobservables are
the fundamental entities that allow statisticians and econometricians to step beyond descriptions
to output empirically-supported explanations. However, because unobservables are, by nature,
severed from empirical support, we should see that these explanations cannot be entirely supported
by the data but always calls for a certain "leap of faith". This trade-off will be illustrated at length
in Appendices C and D through the examples of the Introduction.

4.1 Unobservables, inverse problems, and identification

Statistical models with unobservables have a different origin and structure than models under
complete observability. In particular, the forward problem isolated in the previous section where
a family of measures for the observables is chosen first is not relevant anymore.

Nonetheless, it is still possible to delineate a common structure for models with unobservables
that is intimately tied to the task they support. All the available data 𝑥1, 𝑥2, . . . , 𝑥𝑛 is still construed
as realizations of independent random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 with identical distribution 𝑃𝑋.
However, 𝑃𝑋 is now understood as the marginal of a joint distribution 𝑃𝑋,𝑈 that cannot be sampled
from. This embedding follows from the fact that one hopes to recover an object 𝑔(𝑃𝑋,𝑈) that
depends not simply on 𝑃𝑋 but on the joint system 𝑃𝑋,𝑈 . The other marginal 𝑃𝑈 is construed as the
identical distribution of some independent random variables 𝑈1,𝑈2, . . . ,𝑈𝑛 for which we never
have realizations – the so-called unobservables.

Remark 4.1. This formulation includes cases with dependence and distributional-shift by taking
𝑛 = 1 with 𝑋1 and𝑈1 𝑚-random vectors whose 2𝑚-components are sampled according to the joint
distribution 𝑃𝑋,𝑈 . Because of this, we should directly work under a general i.i.d. formulation
where dependent samples are construed as draw of size 1 from a given multivariate distribution.
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The common denominator of models with unobservables is thus the recovery of an object
that is only indirectly observable. The resulting statistical exercise is made feasible because of the
introduction of unobservable random variables and a joint distribution for them and the observables.
Before considering the origin of this unobservable system, we first collect the construction in the
following definition under what we call an inverse problem.

Definition 4.1 (Inverse Problem). An inverse problem for a distribution 𝑃𝑋, which can be sampled
from, is a pair (Γ, 𝑔) where:

1. Γ is a coupling for 𝑃𝑋 and some other distribution 𝑃𝑈 that cannot be sampled from;
2. 𝑔 : Γ ↦→ 𝜃0 = 𝑔(Γ) is a function that defines an object 𝜃0 = 𝑔(Γ) to be recovered from Γ.

The coupling Γ in Definition 4.1 is alternatively denoted 𝑃𝑋,𝑈 . It is always constrained by
a set of preliminary conditions C (Γ) that is implicitly part of the inverse problem (Γ, 𝑔). These
constrains (almost) always stem from the specification of a functional equation between 𝑋 ∼ 𝑃𝑋

and 𝑈 ∼ 𝑃𝑈 in what constitutes a stochastic model that we should denote SM(𝑋,𝑈). This
stochastic model is often characterized by a number of additional distributional assumptions on the
pair (𝑋,𝑈) that bear equivalently on the coupling Γ = 𝑃𝑋,𝑈 and that should be included in C (Γ).
The resulting set of conditions C (Γ) then works as a defining constraint on the coupling Γ from
which an inverse problem derives. We will argue in Section 4.2 that the constraints C (Γ) always
originates from a preliminary field-specific theory. This theoretical bedrock not only confers to the
stochastic model SM(𝑋,𝑈) and the variables (𝑋,𝑈) field-specific interpretations, but also gives
a way for the modeler to weigh distributional assumptions on (𝑋,𝑈) beyond what is observable.
This will be illustrated at length for the examples of the Introduction in Appendix D.

The difference between forward problems and inverse problems is explicit from the respective
Definitions 3.1 and 4.1. It is seen, in particular, that inverse problems are characterized by the
presence of variables whose distributions cannot be sampled from – the unobservables. This
creates a fundamental problem for inverse problems, partly hidden in their definition but from
which the name derives, that the object of interest 𝑔(Γ) cannot be directly recovered from the
available data 𝑥1, 𝑥2, . . . , 𝑥𝑛 since it depends on a distribution 𝑃𝑈 that cannot be sampled from.
For the problem to be solvable, an additional step may be needed – the identification step. That is,
additional a priori assumptions on the coupling Γ may be required so as to guarantee the existence
of a known function 𝐺 such that 𝑔(Γ) = 𝐺 (𝑃𝑋). This step is what allows to reconstruct the object
𝑔(Γ) of interest from indirect observations 𝑥1, 𝑥2, . . . , 𝑥𝑛 of it. Since the reconstruction amounts
to "undoing" the effect of the unobservables on the object of interest, it is also whay justifies us
calling these problems inverse – see Remark 4.3 for additional clarifications on the terminology.

Definition 4.2 (Identification). An inverse problem (Γ, 𝑔) for 𝑃𝑋 is said to be identified if there
exists a function 𝐺 such that 𝑔(Γ) = 𝐺 (𝑃𝑋). The additional assumptions on Γ needed to obtain
𝐺, if any, are called identification assumptions for 𝐺 and are denoted I (Γ).

The notion of inverse problem and the adjacent problem of identification are illustrated in
Appendix B where the models in Examples A.1, A.2, A.3, and A.4 under complete observability
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are shown to have mirror formulations as inverse problems by appropriately building the right
coupling for some well-chosen unobservables. The applicability of the notion is further illustrated
in Appendix C where we isolate the inverse problems for the examples in the Introduction with
their respective identification assumptions as considered by the authors (with the caveat that the
main problem tackled in Example 1.3 is not properly an inverse problem).

To conclude this section, we prove a number of results that complete the description of inverse
problems and clarify their relation to forward problems. In particular, we show that:

• any function of the coupling can be targeted in an inverse problem – see Remark 4.2;

• inverse problems need not be connected to inverse problems in operator theory – see Re-
mark 4.3;

• inverse problems induce statistical models in the sense of parametrized families of distribu-
tions that lead to the more common definition of identification as in Matzkin (2007) – see
Remark 4.4;

• the separation of all constraints on the coupling Γ of an inverse problem (Γ, 𝑔) into a prelim-
inary defining set C (Γ) and an identification set I (Γ) is always arbitrary – see Remark 4.5;

• identified inverse problems always induce some forward problems – see Remark 4.6;

• the problem of specification for inverse problems always makes the validity of the inferential
results conditional on an unavoidable "leap of faith" which prevents empirical closure – see
Remark 4.7;

• sampling is a modeling choice that always constrains the coupling – see Remark 4.8.

Remark 4.2. The object of interest in an inverse problem (Γ, 𝑔) can be chosen as any feature
of the coupling Γ as made clear in Definition 4.1. This first includes unknown constants in the
constraints C (Γ), which often appear in the formulation of a stochastic model. This is the case in
all the examples of Appendix B where the objects to be recovered are the unknown constants 𝜇,
𝑚, 𝛽, and 𝜌 that appear in the respective stochastic models. For the sake of generalization and
interpretation, it is best to redefine these inverse problems and directly integrate these unknown
constants as constant random variables in the vector 𝑈 of unobservables – this is what is done in
all the examples of Appendix B. The interpretative reason for that redefinition will become clear in
Section 4.2 and in Appendix D. It is important to note, however, that unknown constants in C (Γ) are
not the only objects that can be targeted in an inverse problem, all functions 𝑔(Γ) of the coupling Γ

can. These include, in particular, the full distribution Γ itself, some of its marginal projections, any
of their quantiles or any of their moments (provided they exist). This is illustrated in Examples C.2
and C.3 in Appendix C. The range of possibilities is large but a caveat is in order: it is implicit in
Definition 4.1 that the function 𝑔 is deterministic. Indeed, it is generally unfeasible to take as object
of interest an unobservable random variable (defined on the same probability space as those in the
model). The only case it is possible to do so is when the random variable is constant because its
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distribution is then completely indicative of its only value (leading in particular to a deterministic
𝑔). When the unobservable random variable is non-constant, there is no feasible path within the
model to get back to the even space Ω needed to characterize the random variable. In fact, taking
a (non-constant) random variable as object of interest does not lead to an inferential problem, but
to what can be defined as a prediction problem. This is illustrated in Example C.3 in Appendix C.

Remark 4.3. Inverse problems in statistics and econometrics have been historically tied to deter-
ministic inverse problems in the sciences involving the inversion of an operator – see the discussion
and the references in the Literature Review. It is first important to distinguish between the two
problems – a statistical one and an operator-theoretic one. It is then crucial to note that inverse
problems in statistics and econometrics, whose common denominator is the statistical recovery
of an indirectly observable object, go beyond the stochastic perturbation of inverse problems in
operator theory. Indeed, it is directly seen in Appendix B that, while all these simple examples
could be viewed as stochastic perturbations of deterministic systems, not all these deterministic
systems form inverse problems from the viewpoint of operator theory – only Example B.4 and Ex-
ample B.3 do. It is then seen in the more convoluted examples of Appendix C that not all problems
defined by the statistical recovery of an indirectly observable object originate from the stochastic
perturbation of deterministic systems. The frame provided by Definition 4.1 acknowledges and
captures this variety under a single construction, independently of where unobservability stems
from, be it measurement error as in Example C.1, unobserved characteristics in consumer tastes as
in Example C.2, or the natural of potential outcomes within causal theory as in Example C.3.

Remark 4.4. As forward problems, inverse problems indirectly induce statistical models in the form
of parametrized families of distributions. However, these families are rarely, if ever, considered
in practice because they are convoluted and play little role beyond the stochastic models used to
define them. More importantly, they have a tendency to hide the nature of inverse problems and
to mask the role played by unobservables. The rare cases they may appear explicitly are for the
simple problems of Appendix B where the objects to be recovered are explicit parameters of the
stochastic model and when the problem of identification is handled in an abstract way as in Matzkin
(2007). For completeness, we show how it is always possible to obtain these parametrized families
from inverse problems. This allows to connect our construction to the one in Matzkin (2007) and
prove that the usual notion of identification as a property of the parametrization is equivalent to the
condition given in Definition 4.2. For this purpose, let us consider an arbitrary inverse problem
(Γ, 𝑔) for some distribution 𝑃𝑋 on 𝐸 where the coupling is constrained by a preliminary set of
assumptions that we denote C (Γ). This set of constraints may contain both a stochastic model and
distributional assumptions. From (Γ, 𝑔) and C (Γ), we can define two statistical models: one for
the observable marginal 𝑃𝑋 and one for the full coupling Γ. If the coupling has values in 𝐸 × 𝐹,
then we can define the unindexed families of measures

P𝑚 = {𝑃 ∈ M(𝐸) : ∃Δ ∈ M(𝐸 × 𝐹) s.t. 𝑃 = Δ |𝐸 and C (Δ)}

14



and
P𝑇 = {Δ ∈ M(𝐸 × 𝐹) : C (Δ)}

where Δ |𝐸 (𝐴) = Δ(𝐴 × 𝐹) for all 𝐴 ∈ E and Δ |𝐹 (𝐵) = Δ(𝐸 × 𝐵) for all 𝐵 ∈ F . The object of
interest 𝜃0 = 𝑔(Γ) can then be used as parameter. This leads to two parametrized statistical models

{𝑃𝜃 ∈ P𝑚 : 𝜃 ∈ Θ}

and
{𝑃𝜃 ∈ P𝑇 : 𝜃 ∈ Θ}

where Θ = 𝑔(P𝑇 ). As for forward problems, the parametrization is not necessarily valid for the
unindexed sets P𝑚 and P𝑇 since the function 𝑔 may not be bĳective. However, they remain
valid for some sets P ′

𝑚 and P ′
𝑇

contained in P𝑚 and P𝑇 , respectively, that can be obtained by
taking equivalent classes under parameter equality2. Identification then rewrites in terms of the
injectivity of the index map for P ′

𝑚 given by

𝐼 : Θ = 𝑔(P𝑇 ) → P ′
𝑚,

𝜃 = 𝑔(Δ) ↦→ 𝑃 = Δ |𝐸

Indeed, it is not always true that 𝐼 is injective. To see that, note that if 𝐼 (𝑔(Δ)) = 𝐼 (𝑔(Δ′)) so that
Δ |𝐸 = Δ′

|𝐸 , then it is not always true that 𝑔(Δ) = 𝑔(Δ′) since Δ |𝐹 and Δ′
|𝐹 may differ when too

many degrees of freedom are left in the initial constraints on the coupling Γ from which the inverse
problem derives. If the index map 𝐼 is injective, however, then it is invertible (due to the restriction
to P ′

𝑚) and we have
𝐼−1(Δ |𝐸) = 𝐼−1(𝐼 (𝑔(Δ))) = 𝑔(Δ).

This is equivalent to the definition of identification given in Definition 4.2 where the function 𝐺
is simply taken to be 𝐼−1. This condition in terms of injectivity is often taken as the definition
of identification. It is, however, rarely linked to practical inverse problems due to the difficulty to
properly define statistical models for these problems. The difficulty is handled in the construction
above but it also shows, by contrast, the logical primitivity and simplicity of the inverse structure
exhibited in Definition 4.1 and of the characterization of identification given in Definition 4.2.

Remark 4.5. An inconvenient fact of inverse problems is that there is no principled difference
between assumptions used for preliminarily constraining the coupling Γ when setting up an inverse
problem and later assumptions used in the identification step for the recovery of the object of
interest. This is illustrated in Examples B.1, B.2, B.3, and B.4. In Examples B.1 and B.2,
sufficiently many assumptions on Γ are used in the definition of the inverse problem to make the
identification step disappear. In Examples B.3 and B.4, the coupling has not been sufficiently
constrained for the direct recovery of 𝑔(Γ) leading to a necessary identification step in the form of

2As far as we know, this technical detail is not considered in Matzkin (2007) and the related literature that builds on
it. It is natural, however, to assume it to be of second importance, expect maybe in very pathological cases.
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additional assumptions on Γ. For any given inverse problem, it is always possible to redefine it by
attaching the constraints on the coupling from the identification step so as to make the identification
problem disappear. Conversely, it is always possible to strip constraints from the coupling of an
already identified inverse problem to make the object of interest no longer identified. There is
always an arbitrariness in inverse problems as to when the identification problem starts.

Remark 4.6. An identified inverse problem always induce a forward problem with structure (P , 𝑓 )
where 𝑓 is given by the identification function𝐺 and P is the unindexed family of measures for 𝑃𝑋
described in Remark 4.4 when all constraints on the coupling are added, including the identification
assumptions. That is,

P = {𝑃 ∈ M(𝐸) : ∃Δ ∈ M(𝐸 × 𝐹) s.t. 𝑃 = Δ |𝐸 and C (Δ) ∪ I (Δ)}

where C (Δ) denotes the preliminary constraints on the coupling and I (Δ) denotes the set of
identification assumptions for 𝐺. This forward problem encapsulates all the implied constraints
on the observable distribution by the identified inverse problems. The problem of specification
for this forward problem captures the idea of "empirical adequacy" of inverse problems as further
explained in the next remark.

Remark 4.7. The problem of specification for an inverse problem (Γ, 𝑔) relates to the choice of
a coupling Γ for the observable phenomenon 𝑃𝑋, which usually corresponds to the choice of: a
set of unobservable variables, a stochastic model linking the observables to the unobservables,
preliminary distributional assumptions on the coupling, and identification assumptions for the
object of interest. Ideally and intuitively, we would want to say that an inverse problem is well-
specified if all the constraints on the coupling are empirically valid. This is, however, an unfeasible
request because some constraints directly bear on unobservables for which we have, by definition,
no observations. This makes the specification of inverse problems liable to an unavoidable "leap
of faith": there is necessarily a point where the unobservable structure is not reducible to its
observational implications and hence evades empirical support. This "leap of faith" is the direct
cost to bear for the theoretical interpretation of the inferred object as made clear in Section 4.2. To
make the point more explicitly, we can distinguish two overlapping problems in the specification
of inverse problems:

1. a problem of empirical adequacy where one only looks at the implied constraints on the
observables – this is equivalent to the problem of specification for the forward problem that
is induced by the identified inverse problem as defined in Remark 4.6;

2. a problem of theoretical validity for the model linking observables to unobservables where
validity is understood either in a realist sense of correspondence to an underlying reality or
in an instrumentalist way as compliance with the rules of a pre-specified game.

To interpret the inferential results as intended, the two problems have to be handled jointly as none
is individually sufficient. The unavoidable "leap of faith" in specification comes from the fact that,
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for the same observable distribution, any two inverse problems with similar empirical adequacy
cannot be distinguished empirically: the choice of one or another has to be done on theoretical
grounds alone. One may still hope that empirical adequacy is a good enough guide in most cases
(see Spanos and Mayo (2015)). However, it is clear, as we move from the simple examples of
Appendix B to the more convoluted ones of Appendix C, that empirical adequacy stops being a
guide for the choice of the coupling since almost no assumptions are made on the observables
(see Example C.3 in particular). In many bona fide cases, the many possible empirically adequate
couplings have to be distinguished from a priori theoretical reasons only. We believe that this
point has not been sufficiently emphasized in the literature on the topic given its unbalanced focus
on empirical adequacy (see again Van Fraassen (1980) and Spanos and Mayo (2015)). We also
believe that this limitation offers good support for a realist interpretation of models: since empirical
adequacy is often of no help for model selection, resorting to the most widely shared theoretical
language to weigh assumptions made on their unobservable structure is probably the safest choice.

Remark 4.8. As for forward problems, we introduced inverse problems under an i.i.d. framework
with dependence and distributional-shift as a special case – see Remark 4.1. This was done
for the sake of exposition, but it should not hide the fact that sampling is a modeling choice that
implicitly constrains the coupling. This can be made explicit by redefining inverse problems for the
distribution 𝑃𝑋1,...,𝑋𝑛

of the full observable sample (𝑋1, 𝑋2, . . . , 𝑋𝑛) instead of the hypothesized
identical marginal 𝑃𝑋. The coupling is then implicitly defined for 𝑃𝑋1,...,𝑋𝑛

and 𝑃𝑈1,...,𝑈𝑛
where

𝑃𝑈1,...,𝑈𝑛
is the joint distribution of the full vector (𝑈1,𝑈2, . . . ,𝑈𝑛) of hypothesized unobservables.

Under this formulation, it is clear that an i.i.d. assumption is the most restrictive constraint on the
coupling among all possible sampling choices as it implies the most invariant joint distribution for
the observables and the most invariant joint distribution for the unobservables – both some product
measure for some identical marginals 𝑃𝑋 and 𝑃𝑈 , respectively. It is then seen that the sampling
choice has important consequences for the explanations sustained by inverse problems in virtue
the theory-ladenness made clear in next section. This connection is illustrated with the examples
of the Introduction in Appendix D and discussed at more length in Remark D.1.

4.2 Theory-ladenness, leap of faith, and explanation

The previous section made clear that inverse problems are fundamentally different from forward
problems – this naturally mirrors the observed and historical variance between the statistical
literature and the econometric literature. The fact that forward problems can always be obtained by
solving some well-chosen inverse problems, illustrated in all the examples of Appendix B, should
not hide this difference. Indeed, the specification of a coupling between distributions that can
be sampled from and distributions that cannot commit the modeler to more than a simple set of
distributions for the observables. It is the objective of this section to make precise the nature of
this commitment. For this purpose, we will answer two intertwined questions:

1. Where do inverse problems originate from?
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2. What is gained and what is lost by working with unobservables?

The first question has a simple answer that is distinctly illustrated in all the examples of the Intro-
duction: inverse problems exist because one does not simply want to describe the observations but
instead to leverage them to recover or characterize an underlying structure from which the obser-
vations are supposed to derive. The hypothesizing of an underlying structure for some observable
phenomena is exactly what a "scientific theory" is according to philosophy of science – measure-
ments are made sense of by way of laws and entities that cannot be directly measured. We refer to
Van Fraassen (1980) for an in-depth exploration of this question. For our purpose, what matters is
that we can legitimately view inverse problems as the statistical version of scientific theories. Their
origin can be found either in a deterministic theoretical model that is simply translated in stochastic
terms or in directly hypothesizing a probabilistic relations without connection to a preliminary
non-random structure. In any case, this exercise always supposes the existence of a field-specific
theoretical bedrock that gives a particular meaning and interpretation to all the components of an
inverse problem, and in particular to the unobservables. It is this theoretical coating that guides and
constrains the selection of a particular coupling. It is the hypothesized probabilistic implications
of the theory that are used to assess the plausibility of the assumptions for identification. This is
what we refer to as the theory-ladenness of unobservables.

This makes clear what is gained by working with a coupling that cannot be completely sampled
from: the possibility to go beyond the observable with the (partial) recovery of an underlying
structure, that is, a data-supported explanation. It is the stochastic nature of unobservables in
inverse problems construed as scientific theories that allow to directly leverage the statistical ap-
paratus and bring data into theoretical models. The cost of this procedure is the leap of faith
characterized in Remark 4.7: the fact that no data is ever available for the unobservable processes
prevent explanations to be completely supported by the observations; there is always a range of
observationally equivalent models one has to select from based on theoretical reasons only. The
problem of identification for inverse problems can then be understood as a formalization of the
problem of "underdetermination" of scientific theories from within statistics. This underdetermi-
nation, however, is not sufficient to crown empirical adequacy as the sole guide for the selection
of scientific theories, at least from the statistical perspective. As made clear in Remark 4.7, many
models considered in practice constrain the observables very minimally in favor of assumptions
on the unobservables so that empirical adequacy ends up having almost no bite. The success of
some of these models, where the properties of unobservables have to be discussed on theoretical
grounds alone, may be viewed as a challenge for constructive empiricism at the statistical level.
On the other hand, this supposes that statisticians and econometricians pay full attention to the
unobservables and their respective theoretical bedrock when exporting the inverse methodology
to new problems – this is not always the case in practice where similar assumptions are simply
transposed from one theory to another. This begs the question of what are appropriate criteria to
judge and compare inverse problems – we leave a full exploration of this question to future research.
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To avoid unnecessary conceptual discussions, we close this section by referring to Appendix D
where we illustrate all the claims above in the three examples of the Introduction.

5 Conclusion

Model-based inferential statistics always consists in constraining a set of possible distributions
for some random variables of which finitely many realizations are assumed accessible. These
random variables are naturally called observable and their realizations observations. These obser-
vations are then used to characterize some invariant properties of the observable distribution where
the invariance stems from the modeling constraints. Our paper makes clear that there exist two dif-
ferent ways to come up with such constraints and that each gives to the respective statistical results
very different interpretations. In one case, only the observable random variables are assumed to
exist. This naturally limits the range of statistical tasks that can be considered with an upper bound
in the recovery of the joint distribution of the observables. The advantage is that, in principle at
least, the modeling constraints on the distributions can always be tested against the observations.
This task, descriptive and empirically closed, is captured by what we called forward problems. In
the other case, additional random variables, for which no realizations are ever accessible but on
which the observables depend, are assumed to exist. This embedding invariably ties one’s hands
by preventing the data to be the sole guide and goal, but it opens the statistical apparatus to a wide
range of new questions as it permits the recovery of indirectly observable objects. These problems
can be legitimately called inverse because the objective is to "undo" the effects of the unobserv-
ables on the object of interest so that it can be recovered from the data. We showed that they can
all be handled under a single framework by simply looking at the coupling between observable
and unobservable distributions implicitly defined in each case. This formalization simplifies a
number of standard issues in model-based inferential problems in the presence of unobservables,
including the problem of identification. It also allows us to make clear the dependence of any
inverse problems in statistics and econometrics on a preliminary field-specific theory that justifies
and constrains it. Unobservables are then seen to be what allows one to bring data into scientific
theories through the discipline of statistics to form empirically-supported explanations. The natural
cost of this extension of the statistical reach is an unavoidable leap of faith due to the nature of
unobservability itself: some assumptions on the coupling can never be empirically supported and
require one to argue on theoretical grounds alone. We have remained mostly silent throughout
our discussion on what tools would allow one to best weigh, judge, and compare the plausibility
of different assumptions on unobservable structures that are severed from empirical support – in
practice, we observe an informal back-and-forth between field-specific theoretical justifications
and statistical considerations as exemplified, for instance, in the bona fide examples of this paper.
Given the theory-dependence of inverse problems, it is unclear if a single framework can be devised
to discipline statistical assumptions on the unobservables across fields – it is clear, however, that
doing so would significantly help increase trust in the results of models with unobservables.
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Appendices
We start with a few notational remarks. All measurable spaces considered in what follows

are assumed to be endowed with their Borel 𝜎-algebra. In particular, if 𝐸 is a Euclidean space,
then M(𝐸) denotes all Borel probability measures on 𝐸 . If two random variables are introduced
without mention of their respective sample space, it is generally assumed that this space is the same
and is denoted (Ω,B, P). For any measure space (𝐸, E , 𝜇), the set 𝐿 𝑝 (𝐸, E , 𝜇) or simply 𝐿 𝑝 is the
Lebesgue space of order 𝑝 on this measure space. If a measure on an Euclidean space is assumed
dominated, the dominating measure is always taken to be the Lebesgue measure.

Appendix A Propaedeutic examples: forward problems

Example A.1 (Non-parametric Mean Estimation). Non-parametric mean estimation consists in
recovering the expected value of a real-valued random variable 𝑋 with distribution 𝑃𝑋 based on
observations (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R𝑛 construed as an i.i.d. sample from 𝑃𝑋. This naturally defines
a forward problem whose structure follows from the simple consideration that: the descriptive
first-best solution would be the complete recovery of 𝑃𝑋; this is a hard statistical problem off
which we trade the simpler statical task of recovering its expected value (provided it exists). Non-
parametric mean estimation thus forms a forward problem (P , 𝑓 ) where P is simply the set of
all distributions on R with finite expected value, that is,

P =

{
𝑃 ∈ M(R) :

∫
R
𝑥 𝑑𝑃(𝑥) < ∞

}
.

and 𝑓 is the expected value operator, that is,

𝑓 : P → R, 𝑃 ↦→
∫
R
𝑥 𝑑𝑃(𝑥).

The expected value exists and is unique for each 𝑃 ∈ P so 𝑓 is a well-defined function and the
forward problem is hence properly defined. The forward structure makes clear the trade-off between
completeness of the description and difficulty of the statistical problem: potential information is
lost by moving from M(R) to P and from 𝑃 to 𝑓 (𝑃), but the resulting statistical task is made
easier. This does not mean, however, that the task is trivial: Bahadur and Savage (1956) showed
that, due to the dependence of the mean on the tails, the choice of a large non-parametric set P

prevents the existence of "effective" statistical procedures for 𝑓 (𝑃𝑋) = E [𝑋].

Example A.2 (Mean Estimation in a Gaussian Family). Mean estimation in a Gaussian family with
known variance is a sub-problem directly obtained from non-parametric mean estimation covered
in Example A.1 by further assuming that 𝑃𝑋 is given by 𝑁 (𝜇0, 1) for some 𝜇0 ∈ R (where the
variance is normalized to 1 without loss of generality). This directly forms a forward problem
(P𝐺 , 𝑓 ) where P𝐺 a strict subset of P defined in Example A.1 by restricting it to Gaussian
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distributions with variance equal to 1, that is,

P𝐺 =
{
𝑁 (𝜇, 1) : 𝜇 ∈ R

}
,

and 𝑓 is taken as the restriction of the expected value operator to P𝐺 , namely

𝑓 : P𝐺 → R, 𝑃 ↦→
∫
R
𝑥 𝑑𝑃(𝑥).

The expected value exists and is unique for every 𝑃 ∈ P𝐺 and so the forward problem is properly
defined. The structure again helps make clear the trade-off between descriptive completeness and
statistical difficulty: additional information is potentially lost by moving from P to P𝐺 but this
is exactly what is gained in the simplification of the inferential problem – the Gaussian assumption
ensures control of the tails preventing the behaviors in Bahadur and Savage (1956) to manifest.
It should be noted that, in this case, the restriction to P𝐺 implies that there is no informational
loss in moving from 𝑃 to 𝑓 (𝑃) since the restriction of 𝑓 to P𝐺 is now bĳective. In other words,
all potential information loss in this problem is in restricting M(R) to P𝐺 . The formalization of
Example A.2 being a sub-problem of Example A.1 is made clear in Remark 3.5. The consequences
of this ordering for the descriptive scope are illustrated above.

Example A.3 (Non-parametric Regression). Non-parametric regression under complete observ-
ability consists in recovering the best 𝐿2-approximation of a square-integrable random vari-
able 𝑌 as a function of another square-integrable 𝑋 random variable based on observations
((𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)) ∈ R2𝑛 construed as an i.i.d. sample from the joint distribu-
tion 𝑃𝑋,𝑌 of (𝑋,𝑌 ). This directly defines a forward problem whose structure follows from the
simple consideration that: the descriptive first-best solution would be the complete recovery of
𝑃𝑋,𝑌 ; we trade this hard statistical problem off for the simpler task of recovering the best 𝐿2-
approximation of 𝑌 as a function of 𝑋 (provided it exists). This can be naturally decomposed into
a forward problem (P , 𝑓 ) as follows. The set P is taken as all distributions on R2 with finite
second moments, that is,

P =

{
𝑃 ∈ M(R2) :

∫
𝑥2 𝑑𝑃1(𝑥) < ∞,

∫
𝑥2 𝑑𝑃2(𝑥) < ∞

}
,

where 𝑃1(𝐴) = 𝑃(𝐴 × R) and 𝑃2(𝐴) = (R × 𝐴) for all 𝐴 ∈ B(R). The function 𝑓 is then taken as
the projection given by

𝑓 : P →
{
𝑚 ∈ {R→ R} : 𝑚 is measurable

}
,

𝑃 ↦→ arg min
𝑚 meas.

∫
(𝑦 − 𝑚(𝑥))2 𝑑𝑃(𝑥, 𝑦).

A solution to the optimization problem is known to exist and corresponds to the conditional
expectation of 𝑍2 given 𝑍1 where 𝑍1 ∼ 𝑃1 and 𝑍2 ∼ 𝑃2. In particular, we have 𝑓 (𝑃𝑋,𝑌 ) = 𝑚∗(·) =
E [𝑌 |𝑋 = ·] using standard notations. However, a technical caveat is in order: the conditional
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expectation is not unique on negligible sets. This implies that 𝑓 is not a function as defined above,
which prevents (P , 𝑓 ) to be a proper forward problem. To solve this technical issue, one standard
solution is to modify the co-domain of 𝑓 from measurable functions to equivalent classes of
functions that only differ on non-negligible sets. With this modification, 𝑓 is a proper function and
the forward problem (P , 𝑓 ) for non-parametric regression is properly defined. This decomposition
appropriately captures the trade-off between descriptive completeness and statistical difficulty: a
potential informational loss occurs by moving from M(R2) to P and from 𝑃 to 𝑓 (𝑃), but the
statistical problem is made simpler as a result. The task is, however, far from trivial as exemplified,
for instance, in Györfi, Kohler, Krzyzak, and Walk (2002).

Remark A.1. A weaker version of non-parametric regression can be considered by simply assuming
finite absolute first moments of the marginals in the definition of P and directly taking the
conditional expectation operator defined on 𝐿1 in the definition of 𝑓 . This generalization comes at
the cost of the geometric interpretation of the problem.

Example A.4 (Linear Regression). Linear regression belongs to the same class of problems as
non-parametric regression in the sense that they consider the same set of possible distributions. To
see this, we decompose it as a forward problem (P , 𝑓 ) where P is again given by

P =

{
𝑃 ∈ M(R2) :

∫
𝑥2 𝑑𝑃1(𝑥) < ∞,

∫
𝑥2 𝑑𝑃2(𝑥) < ∞

}
.

The difference with non-parametric regression stems from the choice of 𝑓 . The idea is to re-
strict attention to the best linear 𝐿2-approximation of 𝑌 as a function of 𝑋 among all such 𝐿2-
approximations. That is, 𝑓 is now chosen as

𝑓 : P →
{
𝑚 ∈ {R→ R} : 𝑚 is linear

}
,

𝑃 ↦→ arg min
𝑚 linear

∫
(𝑦 − 𝑚(𝑥))2 𝑑𝑃(𝑥, 𝑦).

By extending the definition of 𝑓 to equivalence classes of functions as in non-parametric regression,
the map 𝑓 becomes a well-defined function and the modified forward problem is hence properly
defined. This forward structure captures again the trade-off between descriptive completeness and
statistical simplicity: by restricting 𝑓 to linear solutions, more information is potentially lost; this
leads, however, to a more manageable statistical problem. To see this, it is useful to re-frame the
problem as commonly done in the literature on linear regression. Indeed, the projection problem
given by 𝑓 in linear regression is directly seen to be equivalent to

𝑓 : P → R, 𝑃 ↦→ arg min
𝛽∈R

∫
(𝑦 − 𝑥𝛽)2 𝑑𝑃(𝑥, 𝑦).

This simplification makes clear the dimensionality reduction in comparison to non-parametric
regression. There is, however, a subtlety in this re-framing since the function 𝑓 may not be well-
defined anymore due to the fact that the first-order condition

∫
(𝑦 − 𝑥𝛽)𝑥 𝑑𝑃(𝑥, 𝑦) = 0 may have
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several solutions. If we want to keep the co-domain of 𝑓 as R, then the set of possible descriptions
can be changed to

P̄ =

{
𝑃 ∈ P :

∫
R
𝑥2 𝑑𝑃1(𝑥) ≠ 0

}
.

Indeed, the condition
∫
𝑥2 𝑑𝑃1(𝑥) ≠ 0 then ensures that the minimizer in the definition of 𝑓 is

unique with closed-form expression 𝛽∗ = (
∫
𝑥2 𝑑𝑃1(𝑥))−1

∫
𝑥𝑦 𝑑𝑃(𝑥, 𝑦). This makes 𝑓 a proper

function and (P̄ , 𝑓 ) a proper forward problem. The idea that linear regression and non-parametric
regression are two approximations, one weaker than the other, to the same first-best description
given by 𝑃𝑋,𝑌 is formalized in the definition of classes introduced in Remark 3.5.

Remark A.2. Another solution to the identification issue in the re-framed linear regression problem
is to change the co-domain of 𝑓 from R to sets of R. The solutions would be singletons whenever∫
𝑥2 𝑑𝑃1(𝑥) ≠ 0 and the whole set otherwise. This alternative is a valid option but rarely considered

in practice for linear regression. It is, however, important to note that it is the actual counterpart
to taking equivalent classes of functions in the original formulation. To draw attention to the
difference, identification where 𝐺 has values in sets are often referred to as set identification. This
still falls under the general frame of Definitions 4.1 and 4.2 whatever the denomination.

Example A.5 (Auto-Correlation Estimation). Auto-correlation estimation is a standard problem
in the analysis of time series. We consider in this example the recovery of the first-order auto-
correlation of a vector 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑇 ) taking values in R𝑇 that is assumed mean-zero
stationary in the sense defined below. The available data (𝑥1, 𝑥2, . . . , 𝑥𝑇 ) consists of a sample
of size 1 drawn from the distribution 𝑃𝑋 of 𝑋 . This naturally defines a forward problem whose
forward structure derives from the simple consideration that: the descriptive first-best would be
to recover the distribution 𝑃𝑋 of the observable random vector 𝑋; however, the problem is not
tractable from the available data and we tackle instead the simpler task of recovering the first-order
correlation structure of the series by assuming it is invariant. This forces us first to restrict the
possible descriptions for 𝑋 by taking P as the set of distributions 𝑃 ∈ M(R𝑇 ) such that:

1.
∫
𝑥 𝑑𝑃𝑡 (𝑥) = 0 for all 𝑡 ∈ {1, 2, . . . , 𝑇};

2. there exists 𝜎2 > 0 such that
∫
𝑥2 𝑑𝑃𝑡 (𝑥) = 𝜎2 for all 𝑡 ∈ {1, 2, . . . , 𝑇};

3. there exists 𝛾 ∈ R such that
∫
𝑥𝑦 𝑑𝑃𝑠,𝑠+1(𝑥, 𝑦) = 𝛾 for all 𝑠 ∈ {1, 2, . . . , 𝑇 − 1};

where 𝑃𝑡 denotes the marginal of the 𝑡th entry of 𝑃 and 𝑃𝑠,𝑠+1 the joint of the 𝑠th and (𝑠+1)th entries
of 𝑃. This stationary structure allows us to meaningfully recover the first-order auto-correlation
coefficient 𝛾/𝜎2 for the series. Given the restrictions on the descriptions, this defines a valid
forward problem (P , 𝑓 ) where 𝑓 maps any 𝑃 ∈ P to its first-order auto-correlation coefficient
𝛾/𝜎2, that is,

𝑓 : P → R, 𝑃 ↦→ 𝛾/𝜎2.

This decomposition in a time series context helps make clear the trade-off between descriptive
completeness and statistical difficulty: information is possibly lost by moving from M(𝑅𝑇 ) to P

and from 𝑃 to 𝑓 (𝑃) = 𝛾/𝜎2, but the statistical problem is made feasible as a result.
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Remark A.3. We have not discussed sampling directly as a restriction on the possible descriptions
in all the previous examples. It is, however, a fundamental one as made clear in Remark 3.6. In
particular, the i.i.d. hypothesis made in Examples A.1, A.2, A.4, and A.3, is a strong constraint on
the possible descriptions: it implies the most invariant joint distribution for the full sample. This
is seen most strikingly when comparing these examples to Example A.5: independence among
the observables under an i.i.d. hypothesis would make the problem of Example A.5 trivial with
auto-correlation of order 1 always equal to 0. To make explicit the strong invariance implied by any
i.i.d. assumption, it is always possible to re-frame forward problems for the joint distribution of
the full sample as made clear in Remark 3.6. This reformulation should be kept in mind whenever
one weighs different modeling choices for forward problems in practice.

Appendix B Propaedeutic examples: inverse problems

Example B.1 (White Noise Model). Non-parametric mean estimation under complete observabil-
ity as considered in Example A.1 has a mirror formulation as an inverse problem with stochastic
model known as the white noise model. The stochastic model is given by

SM(𝑋, (𝜇, 𝜀)) : 𝑋 = 𝜇 + 𝜀,

where 𝑋 is some observable random variable taking values in R and𝑈 = (𝜇, 𝜀) is an unobservable
random vector with values in R2. It is further assumed that 𝜇 is constant and 𝜀 satisfies E [𝜀] = 0.
The only available data for the problem (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R𝑛 is construed as an i.i.d. sample
drawn from 𝑃𝑋. The stochastic model and the assumptions on 𝑈 constrain a coupling Γ for 𝑃𝑋
and 𝑃𝑈 from which the inverse problem derives. The object of interest is taken as 𝑔(Γ) = 𝜇.
From the assumptions on the coupling Γ implied by the stochastic model and the assumptions on
𝑈, we directly have 𝜇 = E [𝑋], and so the inverse problem is identified without any additional
assumption. In this case, the identifying function 𝐺 is simply the mean operator applied to 𝑃𝑋.
The statistical task is then the same as in Example A.1: it consists in recovering E [𝑋] = 𝜇 from
the observations (𝑥1, 𝑥2, . . . , 𝑥𝑛) construed as an i.i.d. sample from 𝑃𝑋.

Example B.2 (Gaussian White Noise Model). Normal mean estimation under complete observ-
ability as considered in Example A.2 has also a mirror formulation as an inverse problem with
stochastic model known as the Gaussian white noise model. This problem is very similar to the
white noise model of Example B.1: the stochastic model has the same additive structure but 𝜀 is
now assumed to be normally distributed with mean zero and known variance (normalized to 1).
That is,

SM(𝑋, (𝜇, 𝜀)) : 𝑋 = 𝜇 + 𝜀,

where now it is assumed that 𝜀 ∼ 𝑁 (0, 1) while 𝜇 is still taken constant. This model constrains
a coupling Γ for 𝑃𝑋 and 𝑃𝑈 . In this case, the restrictions on Γ have some direct parametric
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implications on 𝑃𝑋, namely
𝑃𝑋 = 𝑁 (𝜇, 1).

As in the white noise model, the object of interest is taken as 𝑔(Γ) = 𝜇. For the same reasons,
it is directly seen that 𝜇 = E [𝑋] and so the inverse problem is identified with 𝐺 again the mean
operator applied to 𝑃𝑋. The statistical task is then the same as in Example A.2: it consists in
recovering 𝜇 from the observations (𝑥1, 𝑥2, . . . , 𝑥𝑛) construed as an i.i.d. sample from 𝑁 (𝜇, 1).

Example B.3 (Non-parametric Regression Model). Non-parametric regression under complete
observability as considered in Example A.3 has a mirror formulation as an inverse problem. The
stochastic model defining non-parametric regression as an inverse problem is given by

SM((𝑋,𝑌 ), (𝑚, 𝜀)) : 𝑌 = 𝑚(𝑋) + 𝜀,

where (𝑋,𝑌 ) is a vector of observable random vectors taking values in R2 and 𝑈 = (𝑚, 𝜀) is a
vector of unobservable random variables with values in 𝑀 × R for 𝑀 some functional space in
{R → R}. It is further assumed that 𝑚0 is constant. The only available data for the problem
((𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)) ∈ R2𝑛 is construed as an i.i.d. sample from the joint distribution
𝑃𝑋,𝑌 of (𝑋,𝑌 ). The stochastic model constrains a coupling Γ for 𝑃𝑋,𝑌 and 𝑃𝑈 from which the
inverse problem derives. The object of interest is taken as 𝑔(Γ) = 𝑚 and corresponds to the
constant functional relation between 𝑌 and 𝑋 . The problem is, however, not identified as such. A
standard set of identification assumptions consists in hypothesizing that:

1. 𝑋,𝑌, 𝜀 ∈ 𝐿2(Ω,B, P);

2. E [𝜀 |𝑋] = 0.

These assumptions are enough to identify 𝑚(·) where 𝐺 obtains as the conditional expectation
operator. Indeed, it is directly seen from the law of iterated expectations that 𝑚(·) = E [𝑌 |𝑋 = ·].
From a technical viewpoint, however, the function𝑚(·) is not exactly identified because the operator
𝐺 when defined on 𝑀 has unique images only almost surely. To obtain proper identification, one
solution is to modify slightly the stochastic model by taking for 𝑚(·) not a function but an
equivalent class of functions that are equal on non-negligible sets. The statistical task is then the
same as in Example A.3 and consists in recovering E [𝑌 |𝑋 = ·] = 𝑚(·) from the observations
(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛) construed as an i.i.d. sample from 𝑃𝑋,𝑌 .

Remark B.1. The 𝐿2 condition in the previous example is used to match Example A.3. However, a
more natural set of identification conditions in the inverse formulation of non-parametric regression
consists simply in assuming that 𝜀 and𝑌 have finite expectations and that 𝑋 ,𝑌 , and 𝜀 are defined on
the same probability space. Indeed, the geometric interpretation of the problem is secondary given
the stochastic model, while the relaxation makes the identification assumption more plausible.

Example B.4 (Linear Regression Model). Linear regression under complete observability as con-
sidered in Example A.4 has a dual formulation as an inverse problem that bears close resemblance
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to the non-parametric regression model of Example B.3. In this case, the functional relation
between 𝑌 and 𝑋 is assumed to be linear. This leads to the stochastic model given by

SM((𝑋,𝑌 ), (𝛽, 𝜀) : 𝑌 = 𝛽𝑋 + 𝜀 ,

where𝑈 = (𝛽, 𝜀) is some unobservable random vector with values inR2 and 𝛽 is assumed constant.
This constrains a coupling Γ for 𝑃𝑋,𝑌 and 𝑃𝑈 . As in Example A.4, the object of interest is directly
taken to be 𝑔(Γ) = 𝛽, and not the measurable functions 𝑥 ↦→ 𝛽𝑥 as in the non-parametric case.
This inverse problem (Γ, 𝑔) is not identified without additional assumptions. A standard set of
identification assumptions consists in further constraining the coupling Γ by hypothesizing that:

1. 𝑋,𝑌, 𝜀 ∈ 𝐿2(Ω,B, P) ;

2. E [𝑋𝜀] = 0 ;

3. E [𝑋2] ≠ 0 .

It is then easily seen that 𝛽 is identified by taking 𝐺 : 𝑃𝑋,𝑌 ↦→ (E [𝑋2])−1E [𝑌𝑋]. The statistical
problem is again the same as in Example A.4 and consists in recovering (E [𝑋2])−1E [𝑌𝑋] from
the observations (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛) construed as an i.i.d. sample from 𝑃𝑋,𝑌 .

Example B.5 (Auto-Regressive Model). Auto-correlation estimation under complete observability
as considered in Example A.5 has a mirror formulation as an inverse problem. The stochastic model
for this problem is given by

SM(𝑋, (𝜌, 𝜀)) : 𝑋𝑡 = 𝜌𝑋𝑡−1 + 𝜀𝑡 for all 𝑡 ∈ Z ,

where 𝜌 is a random variable in R which is further assumed constant and 𝑋 = (𝑋𝑡 )𝑡∈Z and
𝜀 = (𝜀𝑡 )𝑡∈Z are stochastic processes whose component each takes values inR. The random variables
𝜀 and 𝜌 are taken as unobservable. The stochastic process 𝑋 is assumed observable in the sense
that a finite connected set of its components is assumed observable, say, 𝑋𝑇 = (𝑋1, 𝑋2, . . . , 𝑋𝑇 )
for some 𝑇 ∈ N. The available data is then a sample of size 1 drawn from 𝑃𝑋𝑇 . The stochastic
model thus constrains a coupling Γ for 𝑃𝑋𝑇 and 𝑃𝑈𝑇 where 𝑃𝑈𝑇 is the joint distribution of
𝑈𝑇 = (𝜌, (𝜀2, 𝜀3, . . . , 𝜀𝑇 )). This defines an inverse problem (Γ, 𝑔) where the object of interest is
taken as 𝑔(Γ) = 𝜌. A standard set of identification assumptions for 𝜌 is given by constraining the
initial stochastic process 𝜀 and the constant 𝜌 as follows:

1. E [𝜀𝑡 ] = 0 for all 𝑡 ∈ Z;

2. E [𝜀2
𝑡 ] = 𝜎2 < ∞ for all 𝑡 ∈ Z;

3. E [𝜀𝑡𝜀𝑠] = 0 for all 𝑡, 𝑠 ∈ Z such that 𝑡 ≠ 𝑠;

4. |𝜌 | < 1.
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The condition |𝜌 | < 1 ensures stationarity of the stochastic process 𝑋 as can be seen by recursion
until an infinite moving average representation for 𝑋𝑡 is obtained. It is then easily seen that 𝜌 is
identified and is equal to the auto-correlation coefficient (of order 1) for 𝑋 . The statistical problem is
then the same as in Example A.5 and consists in recovering 𝜌 = 𝛾/𝜎2 from a sample (𝑥1, 𝑥2, . . . , 𝑥𝑇 )
of size 1 drawn from 𝑃𝑋𝑇 where 𝑃𝑋 satisfies E [𝑋𝑡 ] = 0 for all 𝑡 ∈ Z, E [𝑋𝑡𝑋𝑡+1] = 𝛾 for some
𝛾 ∈ R for all 𝑡 ∈ Z, and E [𝑋2

𝑡 ] = 𝜎2 for some 𝜎2 > 0 for all 𝑡 ∈ Z.

Remark B.2. We framed the previous problem in terms of infinite sequences 𝑋 = (𝑋𝑡 )𝑡∈Z and
𝜀 = (𝜀𝑡 )𝑡∈Z as it is the standard way to introduce it in the literature. However, it is also possible to
frame it directly for two finite processes (𝑌1, . . . , 𝑌𝑇 ) and (𝜀2, . . . , 𝜀𝑇 ) so as to exactly match the
forward structure of Example A.5. In this case, the condition |𝜌 | < 1 may be changed directly for
an hypothesis that the series is stationary in the sense defined in Example A.5.

Appendix C Bona fide examples: inverse problems

Example C.1 (Hu, Schennach, and Shiu (2022)). We make explicit the inverse problem in Hu,
Schennach, and Shiu (2022) as well as the identification assumptions considered by the authors.
By hypothesizing the model

𝑌 = 𝑚0(𝑋∗) + 𝜂 ,

𝑋 = 𝑋∗ + 𝜀,

the authors implicitly constrain a coupling Γ between some observable random vector (𝑋,𝑌 ) with
values in R2 and some unobservable random vector 𝑈 = (𝑚0, 𝑋

∗, 𝜂, 𝜀) with values in 𝑀 × R3 for
some functional space 𝑀 in {R → R}. It is further assumed that 𝑚0 is constant. The object of
interest is taken by the authors as 𝑔(Γ) = (𝑚0, 𝑓𝜀) where 𝑓𝜀 denotes the density of 𝜀 (provided
it exists). This defines an inverse problem (Γ, 𝑔) for which the authors consider the following
identification assumptions:

1. The distribution of (𝑋, 𝑋∗) admits a density 𝑓𝑋,𝑋∗ with respect to the Lebesgue measure;

2. The conditional density 𝑓𝑋 |𝑋∗ and the marginal density 𝑓𝑋∗ are bounded by some constant;

3. 𝜂 is independent of 𝑋∗;

4. E [𝜂 |𝑋∗] = 0;

5. E [exp(𝑖𝛾𝜂)] ≠ 0 for all 𝛾 ∈ R;

6. 𝑋 is independent of 𝑌 conditional on 𝑋∗;

7. For any function ℎ ∈ 𝐿2(X ∗),
∫
𝑓𝑋 |𝑋∗ (𝑥 |𝑥∗)ℎ(𝑥∗) 𝑑𝑥∗ = 0 for all 𝑥 ∈ X implies ℎ(𝑥∗) = 0

for almost any 𝑥∗ ∈ X ∗;
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8. For any function ℎ ∈ 𝐿2(X ),
∫
𝑓𝑋 |𝑋∗ (𝑥 |𝑥∗)ℎ(𝑥) 𝑑𝑥 = 0 for all 𝑥∗ ∈ X ∗ implies ℎ(𝑥) = 0 for

almost any 𝑥 ∈ X ;

9. There exists a known functional 𝐻 such that 𝐻 [ 𝑓𝑋 |𝑋∗ ( |𝑥∗)] = 𝑥∗ for any 𝑥∗ ∈ X ∗;

10. 𝑚0 is continuous, bounded, and strictly monotonic over X ∗.

The sets X ,X ∗ and Y denote the support of the distributions of 𝑋, 𝑋∗, and 𝑌 , respectively. The
main result of the paper (Theorem 2.1) shows that these conditions are sufficient to identify
𝑔(Γ) = (𝑚0, 𝑓𝜀). In particular, the authors implicitly define a function 𝐺 as solution to an
integral equation that uniquely characterizes 𝑔(Γ) from 𝑃𝑋,𝑌 . For the sake of illustration, it
should be noted that Assumption (4) leads to 𝑚0(·) = E [𝑌 |𝑋∗ = ·] as in Example B.3. However,
this expression is not sufficient to identify 𝑚0 here because 𝑋∗ is unobservable in this problem.
Isolating (Γ, 𝑔) and the identification constraints on Γ helps make clear the underlying structure
that precedes the constrained observable distribution 𝑃𝑋,𝑌 . It shows, in particular, that recovering
(𝑚0, 𝑓𝜀) = 𝐺 (𝑃𝑋,𝑌 ) does not only capture information on 𝑃𝑋,𝑌 but characterizes the whole
system Γ in what forms an empirically-supported explanation. The price to pay for this is an
unavoidable leap of faith that stems from unobservability itself as explicit from all the assumptions
put on the unobservable structure. The exact nature of the explanation for the identified inverse
problem depends on a preliminary field-dependent theory that gives a certain meaning to Γ, to the
unobservables, and to the object of interest (𝑚0, 𝑓𝜀). This theoretical bedrock is also used when
weighing the assumptions on the unobservables severed from empirical support. This is made
clear in Appendix D.1 following the general discussion of Section 4.2.

Example C.2 (Moon, Shum, and Weidner (2018)). We make explicit the inverse problem in Moon,
Shum, and Weidner (2018) as well as the identification assumptions considered by the authors. By
hypothesizing the model

𝛿 𝑗𝑡 = 𝑋
′
𝑗𝑡 𝛽

0 + 𝜆0′
𝑗 𝑓

0
𝑡 + 𝑒 𝑗𝑡 ,

𝑆 𝑗𝑡 =

∫
𝜋(𝛿𝑡 , 𝑋𝑡 , 𝑣) 𝑑𝐺 (𝑣;𝛼0),

for all 𝑗 = 1, 2, . . . , 𝐽 and all 𝑡 = 1, 2, . . . , 𝑇 where

𝜋(𝛿𝑡 , 𝑋𝑡 , 𝑣) =
exp(𝛿 𝑗𝑡 + 𝑋 ′

𝑗𝑡
𝑣)

1 +
∑𝐽
𝑙=1 exp(𝛿𝑙𝑡 + 𝑋 ′

𝑙𝑡
𝑣)
,

and 𝐺 is a known distribution up to 𝛼0, the authors implicitly constrain a coupling Γ between
some observable random vector (𝑋, 𝑆, 𝑍) with values in R𝐾×𝐽×𝑇 × R𝐽×𝑇 × R𝑀×𝐽×𝑇 and some
unobservable random vector 𝑈 = (𝛼0, 𝛽0, 𝜆0, 𝑓 0, 𝑒, 𝛿) with values in R𝐿 × R𝐾 × R𝐽×𝑅 × R𝑇×𝑅 ×
R𝐽×𝑇 × R𝐽×𝑇 . It is assumed that the components of 𝛼0, 𝛽0, 𝜆0, and 𝑓 0 are constant. The object
of interest is taken by the authors to be 𝑔(Γ) = (𝛼0, 𝛽0, 𝜆0 𝑓 0′ , 𝑃𝑒,𝑋,𝑍 ). This defines an inverse
problem (Γ, 𝑔) for which the authors consider the following identification assumptions:

1. For each 𝑡 = 1, 2, . . . , 𝑇 and any value 𝛼 ∈ B𝛼 ⊆ R𝐿 , the equation 𝑆 𝑗𝑡 =
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∫
𝜋(𝛿𝑡 , 𝑋𝑡 , 𝑣) 𝑑𝐺 (𝑣;𝛼) can be inverted so that 𝛿𝑡 can be expressed as a unique function

of 𝛼, 𝑋𝑡 , and 𝑆𝑡 , which we denote 𝛿𝑡 (𝛼);

2. 𝛿 𝑗𝑡 (𝛼), 𝑋 𝑗𝑡 , and 𝑍 𝑗𝑡 have finite second moments for all 𝑡 = 1, 2, . . . , 𝑇 and all 𝑗 = 1, 2, . . . , 𝐽;

3. E [𝑒 𝑗𝑡 ] = 0 for all 𝑡 = 1, 2, . . . , 𝑇 and all 𝑗 = 1, 2, . . . , 𝐽;

4. E [𝑋 𝑗𝑡𝑒 𝑗𝑡 ] = 0 for all 𝑡 = 1, 2, . . . , 𝑇 and all 𝑗 = 1, 2, . . . , 𝐽;

5. E [𝑍 𝑗𝑡𝑒 𝑗𝑡 ] = 0 for all 𝑡 = 1, 2, . . . , 𝑇 and all 𝑗 = 1, 2, . . . , 𝐽;

6. E [(𝑥, 𝑧)′(1𝑇 ⊗ 𝑀(𝜆,𝜆0 ) (𝑥, 𝑧)] ≥ 𝑏1𝐾+𝑀 for some 𝑏 > 0 and all 𝜆 ∈ R𝐽×𝑅;

7. E [Δ𝜉′
𝛼,𝛽

(𝑥, 𝑧)]E [(𝑥, 𝑧)′(𝑥, 𝑧)]−1E [(𝑥, 𝑧)′Δ𝜉𝛼,𝛽] > E [Δ𝜉′𝛼,𝛽 (1𝑇 ⊗ 𝑃(𝜆,𝜆0 ) )Δ𝜉𝛼,𝛽] for all
(𝛼, 𝛽) ≠ (𝛼0, 𝛽0) and all 𝜆 ∈ R𝐽×𝑅;

where vec denotes vectorization of a matrix by stacking its columns, 𝑥 is a 𝐽𝑇 × 𝐾 matrix with
columns 𝑥.,𝑘 = vec(𝑋𝑘), 𝑧 is a 𝐽𝑇 ×𝑀 matrix with columns 𝑧.,𝑚 = vec(𝑍𝑚), 𝛿vec(𝛼) = vec(𝛿(𝛼)),
Δ𝜉𝛼,𝛽 = 𝛿vec(𝛼) − 𝛿vec(𝛼0) −𝑥(𝛽− 𝛽0), 𝑃(𝜆,𝜆0 ) and 𝑀(𝜆,𝜆0 ) are the 𝐽 × 𝐽 matrices that project onto
and orthogonal to the span of (𝜆, 𝜆0). The authors then prove (Theorem 3.1.) that these conditions
are sufficient to identify 𝑔(Γ) = (𝛼0, 𝛽0, 𝜆0 𝑓 0′ , 𝑃𝑒,𝑋,𝑍 ). In particular, the authors implicitly
define a function 𝐺 as solution to a well-chosen optimization problem that uniquely characterizes
𝑔(Γ) from 𝑃𝑋,𝑆,𝑍 . Isolating (Γ, 𝑔) and the identification constraints on Γ helps make clear the
underlying structure that precedes the constrained observable distribution 𝑃𝑋,𝑆,𝑍 . It shows, in
particular, that recovering (𝛼0, 𝛽0, 𝜆0 𝑓 0′ , 𝑃𝑒,𝑋,𝑍 ) = 𝐺 (𝑃𝑋,𝑆,𝑍 ) does not only capture information
on the observable distribution 𝑃𝑋,𝑆,𝑍 but characterizes the whole system Γ in what forms, in fine,
an empirically-supported explanation. The price to pay for this is an unavoidable leap of faith as
explicit from all the assumptions put on the unobservable structure that are severed from empirical
support. The exact nature of the explanation for the identified inverse problem depends on a
preliminary field-dependent theory that gives a certain meaning to Γ, to the unobservables, and to
the object of interest (𝛼0, 𝛽0, 𝜆0 𝑓 0′ , 𝑃𝑒,𝑋,𝑍 ). This theoretical basis is also used when weighing the
identification assumptions on the coupling. This is made clear for the model above in Appendix D.2
following the general discussion of Section 4.2.

Remark C.1. In Example C.2, the observable distribution considered for the problem is the whole
distribution of the full sample. This is typical for problems with dependence and distributional-
shift as in Example B.5. In this case, however, there is no direct assumption of stationarity or
distributional regularity as compared to Example B.5 – in particular, the unobservables 𝜆0

𝑗
and 𝑓 0

𝑡

possibly differ for each 𝑗 = 1, 2, . . . , 𝐽 and each 𝑡 = 1, 2, . . . , 𝑇 . This creates a conceptual gap
where identification is severed from estimation. This conceptual incongruity has been recognized
in the literature but, as far as we know, has never been properly addressed.

Example C.3 (Lei and Candès (2021)). We comment on the problem considered in Lei and
Candès (2021) and compare it to common inverse problems in causal inference. By considering
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the stochastic model
𝑌 = 𝑌 (1)𝑇 + 𝑌 (0) (1 − 𝑇),

the authors implicitly define a coupling Γ between the distribution of the observable random vector
(𝑌, 𝑋, 𝑇) taking values in R × R𝑑 × {0, 1} and the distribution of the unobservable random vector
𝑈 = (𝑌 (1), 𝑌 (0)) taking values in R2. The object of interest chosen by the authors is the random
variable 𝜏 = 𝑌 (1) − 𝑌 (0) which is not assumed to be constant. This choice, however, does not
lead to an inverse problem as made clear in Remark 4.2: it is implicit in Definition 4.2 that 𝑔 is a
deterministic function; the reason is that taking a non-constant random variable as object of interest
prevents, de facto, identification in the traditional sense since there is no possibility, in general, to
access the sample space Ω on which the random variable is defined. In fact, taking a non-constant
random variable as the object of interest constitutes what can be understood as a prediction problem
(for which we do not intend to provide a precise definition here), not an inferential problem. It is
actually the objective of the authors to move beyond inferential problems for causal inference – they
contrast their approach with the more traditional inverse problems considered in the literature. For
completeness, we introduce one of these problems, the most elementary one, and briefly comment
on two other ones that are considered in Lei and Candès (2021). The main idea is that, while a
non-constant 𝜏 = 𝑌 (1) − 𝑌 (0) cannot be inferred but only predicted, it is still possible to consider
as object of inference its distribution or its moments. This would then form a valid inverse problem
for Γ provided the moments exist (which we assume in what follows). This is what is done in the
most elementary inverse problem in causal inference: the object of interest is taken as the first
moment of 𝜏, that is,

𝜏ATE = E [𝜏] = E [𝑌 (1) − 𝑌 (0)],

which is referred to as the average treatment effect (ATE). Taking 𝑔(Γ) = 𝜏ATE then defines a proper
inverse problem (Γ, 𝑔) for which identification may be meaningfully considered. A standard set of
identifications consists in assuming that:

1. The variables 𝑌,𝑌 (0), 𝑌 (1) have finite expectations;

2. E [𝑌 (1) |𝑇 = 1, 𝑋] = E [𝑌 (1) |𝑋];

3. E [𝑌 (0) |𝑇 = 0, 𝑋] = E [𝑌 (0) |𝑋].

This suffices for the identification of 𝜏ATE as it directly follows from mean independence and the
law of iterated expectations that

𝜏ATE = E [E [𝑌 |𝑇 = 1, 𝑋] − E [𝑌 |𝑇 = 0, 𝑋]],

implicitly defining a function 𝐺 from 𝑃𝑌,𝑋,𝑇 to R where 𝐺 (𝑃𝑌,𝑋,𝑇 ) = 𝜏ATE. This inverse problem
is the most standard one in causal inference, but it is not only one for the coupling Γ obtained from
the binary Neyman–Rubin model. Two standard inverse problems, which are considered in Lei
and Candès (2021), consist in the recovery of the conditional average treatment effect (CATE) and

32



of the conditional quantile treatment effect (CQFT) respectively defined as the functions

𝑚 : 𝑥 ↦→ E [𝑌 (1) − 𝑌 (0) |𝑋 = 𝑥]

and
𝑞 : 𝑥 ↦→ 𝑄𝛼 (𝑌 (1) |𝑋 = 𝑥) −𝑄𝛼 (𝑌 (0) |𝑋 = 𝑥)

where 𝑄𝛼 (·|·) denotes the 𝛼th conditional quantile. We refer to Kennedy (2023) and Firpo
(2007), respectively, for identification assumptions and additional statistical considerations for
these problems. The isolation of the common coupling Γ in these problems helps make clear
the existence of an underlying structure that precedes the recovery of 𝜏ATE, 𝑚(·), or 𝑞(·) from
the observable distribution 𝑃𝑌,𝑇,𝑋. In the case of the average treatment effect, for instance, it
is clear that recovering 𝐺 (𝑃𝑌,𝑋,𝑇 ) = 𝜏ATE does not provide information only about 𝑃𝑌,𝑋,𝑇 but
about the whole hypothesized system Γ in what forms in fine an empirically-supported causal
claim. The price to pay for this causal capability is an unavoidable "leap of faith" that comes from
unobservability itself, here the incapacity to completely observe the potential outcomes (which is
referred to as the "fundamental problem of causal inference" in this context). This "leap of faith"
in the case of the average treatment effect consists mainly in the untestable mean independence
conditions (2) and (3) – the severance of this condition from empirical support will be made clearer
in Appendix D.3 where we will also discuss the preliminary causal theory that gives to the stochastic
model, the potential outcomes, and the average treatment effect their causal interpretation. This
dependence on a preliminary field-dependent theory, here a causal theory, is not specific to this
problem but common to all inverse problems as made clear in Section 4.2.

Remark C.2. The identification assumptions (2) and (3) for the average treatment effect are often
changed for a stronger assumption called "strong ignorability" which consists in assuming that the
random vector (𝑌 (1), 𝑌 (0)) is independent of 𝑇 conditional on 𝑋 . In this case, however, one needs
to also assume a "no overlap" condition given by P(0 < P(𝑇 = 1|𝑋) < 1) = 1. This is needed so
that conditioning on 𝑇 = 1 and 𝑇 = 0 is properly defined. This was not necessary in the previous
set of conditions because finiteness of the expectation of 𝑌 (0) and 𝑌 (1) implies directly from the
equalities in (2) and (3) that the conditional expectations on 𝑇 = 1 and 𝑇 = 0 are properly defined
as regular conditional probabilities. The inclusion or exclusion of the "no overlap" condition is
often a source of confusion in the literature.

Remark C.3. The Neyman–Rubin model where the potential outcomes are unobservable random
variables fits within what is often referred to as the super-population approach to causal inference.
For completeness, it is important to note that there exists an alternative approach to causal inference
– known as the design-based approach – that leverages the Neyman–Rubin model but where the
potential outcomes are taken as fixed unobservable values for each observation of the sample. This
approach leads to a stochastic model with an extreme form of distributional shift akin to the model
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of Example C.2. The stochastic model reads as

𝑌𝑖 = 𝑦𝑖 (1)𝑇 + 𝑦𝑖 (0) (1 − 𝑇)

for all 𝑖 = 1, 2, . . . , 𝑛. The unobservables are taken as 𝑈 = (y(1), y(0)) where y(1) =

(𝑦1(1), 𝑦2(1), . . . , 𝑦𝑛 (1)) and y(0) = (𝑦1(0), 𝑦2(0), . . . , 𝑦𝑛 (0)) each with values in R𝑛.
It is further assumed that each component of y(1) and y(0) is constant. This con-
strains a coupling Γ for the observable distribution 𝑃(𝑌1,𝑋1,𝑇1 ) ,..., (𝑌𝑛 ,𝑋𝑛 ,𝑇𝑛 ) of the full sample
(𝑌1, 𝑋1, 𝑇1), (𝑌2, 𝑋2, 𝑇2) . . . , (𝑌𝑛, 𝑋𝑛, 𝑇𝑛) and the (degenerate) unobservable distribution 𝑃𝑈 . Due
to the extreme form of distributional shift, it is generally impossible to take 𝑔(Γ) = (y(1), y(0))
as the object of interest and obtain an inverse problem that can be identified under reasonable
assumptions. With enough constraints on Γ, however, it is still possible to consider a num-
ber of valid statistical problems, in particular when it is assumed that the distribution of 𝑇 is
known. In this case, for instance, it is possible to meaningfully test the Fisher null hypothesis that
y(1) − y(0) = (0, . . . , 0). The structure of Definition 4.1 is seen here to be helpful as a disci-
plining device to bridge the sampling-based and the design-based approaches to causal inference.
The complete exploration of this bridge through inverse problems is left for future research (as
is the similarity of design-based causal inference with other models presenting extreme forms of
distributional shift such as the factor model of Example C.2).

Appendix D Inverse problems as scientific theories: examples

Example D.1 (Hu, Schennach, and Shiu (2022)). We made explicit in Appendix C.1 the inverse
problem behind the model in Hu, Schennach, and Shiu (2022). We now make clear the origin
of this problem in a preliminary field-dependent theoretical model which confers to the recovery
of 𝑔(Γ) = (𝑚0, 𝑓𝜀) a broader interpretation. We also briefly comment on the "leap of faith" that
stems from unobservability in this case. The stochastic model in Hu, Schennach, and Shiu (2022)
has two components: a measurement error model (extending Example B.1) and a non-parametric
regression model (similar to Example B.3). It can be interpreted as saying that: an outcome 𝑌 is
measured perfectly; this outcome is the sum of a function of some variable 𝑋∗ and some purely
random factor 𝜂; the explanans 𝑋∗ is always measured with some error in virtue of the recording
process. The authors take the stochastic model as a starting point for their analysis, but they
informally provide two field-dependent theories, stated in probabilistic terms (under an implicit
i.i.d. assumption – see Remark D.1), that are supposed to generate it: one from nutrition, one from
economics. For completeness, we briefly introduce them:

• Nutritional model: cholesterol levels (𝑌 ) are a function of food intake (𝑋∗) plus some
purely random factor (𝜂); cholesterol levels (𝑌 ) are perfectly measured due their recording in
laboratories; observable food intake (𝑋) is self-reported and is thus best viewed as the sum
of the true food intake (𝑋∗) and some reporting error (𝜀).
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• Economic model: children health status (𝑌 ) is a function of household income (𝑋∗) and
some purely random factor (𝜂); children health status (𝑌 ) is perfectly measured by "some
objective measures"; observable household income (𝑋) is obtained from tax data and is thus
best viewed as the sum of the true household income (𝑋∗) and some reporting error (𝜀).

The recovery of 𝑔(Γ) = (𝑚0, 𝑓𝜀) from the data ((𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)) would then empirically
support a nutrition-specific explanation (of cholesterol levels in terms of food intakes) or an
economics-specific explanation (of children health status in terms of household income). This
extension of the statistical reach is paid by an unavoidable "leap of faith" that comes from all the
assumptions bearing on the unobservables as made explicit in Appendix C.1. In this case, the
implied constraints on the observable distribution 𝑃𝑋,𝑌 are too mild to meaningfully reject the
unobservable structure from the data – empirical adequacy is not a useful guide. Most of the
justifications for any specific coupling Γ have to happen at the theoretical level (from economics
or nutrition in this case). As can be seen in this example, however, the stochastic model and the
probabilistic assumptions for identifications are motivated by field-dependent theoretical reasons
but also by practical statistical considerations. This makes the plausibility of the statistical results
within the theoretical model hard to weigh in practice.

Example D.2 (Moon, Shum, and Weidner (2018)). We made explicit in Appendix C.2 the in-
verse problem behind the model in Moon, Shum, and Weidner (2018). We now make clear
the origin of this problem in a preliminary economic model which confers to the recovery of
𝑔(Γ) = (𝛼0, 𝛽0, 𝜆0 𝑓 0′ , 𝑃𝑒,𝑋,𝑍 ) a broader interpretation. We also briefly comment on the "leap of
faith" that stems from unobservability in this case. The stochastic model in Moon, Shum, and
Weidner (2018) has a very tight connection to economic theory: it is supposed to capture aggregate
level demand obtained from individual utility maximization and is a direct extension of the stan-
dard BLP model from Berry, Levinsohn, and Pakes (1995) where the "structural error" is given an
interactive fixed effects formulation. For completeness, we briefly introduce the main components
of the economic model which is directly stated in probabilistic terms (with distributional shift
across 𝑗 = 1, 2, . . . , 𝐽 and 𝑡 = 1, 2, . . . , 𝑇 but not across 𝑖 = 1, 2, . . . , 𝑛 – see Remark D.1):

• Utility and mean-utility: Individual 𝑖 gets some utility from buying product 𝑗 in market 𝑡
which is assumed to be 𝑢𝑖 𝑗𝑡 = 𝛿 𝑗𝑡 + 𝜀𝑖 𝑗𝑡 + 𝑋 ′

𝑗𝑡
𝑣𝑖 . Individual utility is thus decomposable into

some invariant individual preferences 𝑣𝑖 multiplied by some observable characteristics 𝑋 𝑗𝑡
of product 𝑗 in market 𝑡 (e.g., price), some preference shocks 𝜀𝑖 𝑗𝑡 , and some mean-utility
𝛿 𝑗𝑡 invariant across individuals. In this case, it is further assumed that mean-utility is given
by 𝛿 𝑗𝑡 = 𝑋 ′

𝑗𝑡
𝛽0 + 𝜆0′

𝑗
𝑓 0
𝑡 + 𝑒 𝑗𝑡 , that is, it can be decomposed into a linear function of the

product-market characteristics 𝑋 𝑗𝑡 , some product-specific characteristics 𝜆0
𝑗

multiplied by
some market-specific characteristics 𝑓 0

𝑡 , and some product-market shocks 𝑒 𝑗𝑡 .

• Multinomial logit choice and aggregation: Individual 𝑖 buys product 𝑗 in market 𝑡 if it yields
the highest utility among all products in market 𝑡. It is assumed that the preference shocks
𝜀𝑖 𝑗𝑡 are i.i.d. Gumbel so that the probability that individual 𝑖 chooses product 𝑗 in market 𝑡 is
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of the multinomial logit form as given by 𝜋 𝑗𝑡 (𝛿𝑡 , 𝑋𝑡 , 𝑣𝑖) where 𝛿𝑡 and 𝑋𝑡 are the mean-utility
and the observable characteristics when vectorized over 𝑗 . It is further assumed that the
individual preferences drivers 𝑣𝑖 are identically distributed according to some distribution.
The observable market share of product 𝑗 in market 𝑡 is then taken as the expected value of
the individual choice probabilities with respect to this distribution.

The recovery of 𝑔(Γ) = (𝛼0, 𝛽0, 𝜆0 𝑓 0′ , 𝑃𝑒,𝑋,𝑍 ) from the data ((𝑥𝑘 𝑗𝑡 ), (𝑠 𝑗𝑡 ), (𝑧𝑚𝑗𝑡 )) would then
empirically support an economics-specific explanation for aggregate demand in terms of individual
utility maximization as specified above. The extension of the statistical reach beyond information
on 𝑃𝑋,𝑆,𝑍 is paid by an unavoidable "leap of faith" that comes from all the hypotheses bearing on
the unobservable structure isolated in Appendix C.2. In this case, as in Example D.1, the implied
constraints from the stochastic model and the identification step on the observable distribution
𝑃𝑋,𝑆,𝑍 are too mild to meaningfully reject the unobservable structure from the data – empirical
adequacy is of little help. Most of the litigation for or against the model has to happen at
the theoretical level from within economics itself. As can be seen in this example, however,
the modeling choice and the identification assumptions for the problem are not all motivated by
economic reasons, some follow from practical statistical considerations. This makes the plausibility
of the statistical results construed as an economic explanation hard to weigh in practice.

Example D.3 (Lei and Candès (2021)). The Neyman–Rubin potential outcome model considered
in Lei and Candès (2021) is a workhorse of causal inference. We made explicit in Appendix C.3
a few inverse problems that can be considered within this framework. For the sake of exposition,
we only consider the Average Treatment Effect (ATE) one in this section and make explicit the
origin of this problem in a preliminary causal theory. The main claim of this theory (directly stated
in probabilistic terms under an implicit i.i.d. assumption – see Remark D.1) is that causality can
be captured by some unobservable variables called potential outcomes, namely 𝑌 (0) and 𝑌 (1),
that correspond to what the outcome 𝑌 would be if the treatment 𝑇 were set or fixed to 0 and
1, respectively. It is this particular interpretation of the variables 𝑌 (0) and 𝑌 (1) that gives to
𝜏ATE = E [𝑌 (1) −𝑌 (0)] its name of average treatment effect and its causal interpretation. The only
constraint on 𝑌 (1) and 𝑌 (0) follows from a natural interpretation of potential outcomes that for
each 𝑡 ∈ {0, 1}, the variable𝑌 (𝑡) is equal to the outcome𝑌 whenever 𝑇 = 𝑡. It is implicit that when
𝑇 ≠ 𝑡, the variable 𝑌 (𝑡) is unobservable. This mild clause on observability is exactly where the
stochastic model at the basis of the Neyman–Rubin framework originates. In the case of the average
treatment effect, the recovery of 𝑔(Γ) = 𝜏ATE from the data (𝑦1, 𝑥1, 𝑡1), (𝑦2, 𝑥2, 𝑡2), . . . , (𝑦𝑛, 𝑥𝑛, 𝑡𝑛)
would then empirically support a causal claim that the treatment 𝑇 has an average causal effect
on 𝑌 equal to 𝜏ATE. The cost of this causal extension of the statistical apparatus is an inevitable
"leap of faith" which stems directly from the unobservability of (𝑌 (0), (1)) within the inverse
problem – a direct transcription of the "fundamental problem of causal inference". For the average
treatment effect, this "leap of faith" comes mostly from the identification assumptions (2) and
(3) of mean independence for 𝑌 (1) and 𝑌 (0) as stated in Appendix C.3. These assumptions
cannot be empirically tested because no realizations of (𝑌 (0), (1)) exist. Perfect knowledge of
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the distribution of 𝑇 , which happens often in practice when one is in charge of the experiment
(e.g., 𝑇 ∼ Bernoulli(1/2)), would not be enough to guarantee the validity of the conditions. Only
knowledge of the conditional distribution of𝑌 (0) and𝑌 (1) on 𝑇 would do but it is severed from the
data by definition. Put another way, any form of selection (in average) would have to be excluded
ex principio for the conditions to hold. The same remarks would hold for the strong ignorability
condition. This is the trade-off proper to any inverse problem here in a causal context which thus
reads as: no causality without a "leap of faith". It is clear, moreover, in this case, that the constraints
implied by the stochastic model and the identification assumptions on the observable distribution
𝑃𝑌,𝑋,𝑇 are minimal – empirical adequacy is of no help here. The plausibility of the constraints on
the unobservables 𝑌 (0) and 𝑌 (1) have to be judged based on counterfactual reasoning only.

Remark D.1. In all the problems above, we have not explicitly discussed sampling as an hypothesis
in need of interpretation. It is, however, a key modeling assumption that is always running in the
background of inverse problems and that plays a substantial role in the respective explanations
they sustain – see Remark 4.8. It is easily seen in the previous examples that different sampling
hypotheses sustain different theories by isolating different invariant parts of the joint distribution
for the sample under consideration. The choice of a sampling assumption happens either when
transposing a deterministic model in stochastic terms or directly when a probabilistic model is
used as a starting point for the explanation. At one extreme, we have the i.i.d. hypothesis where
all observations are supposed to be independent draw of the same underlying distribution – see
Examples D.1 and D.3. At the other extreme, we have the unfeasible case where the joint distribution
for the whole sample is not constrained. In between, we have a plethora of possibilities where only
some parts of the marginal distributions are made invariant – see, for instance, Example D.2.
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