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Comparison of statistical experiments (a.k.a. statistical models), which form the
fundamental stratum of statistics, has a naturally intuitive justification. It is more precisely
warranted from two directions (see vdV S.7. in The Statistical Work of Lucien Le Cam):
(a) between two statistical models for the same inferential parameter, we want to know
which one contains more information on the parameter (so as to work directly with the most
informative one); (b) given a possibly complex statistical model, we want to approximate
it (in the limit) by some simpler model for the same parameter (ideally, we would like
some notion of asymptotic equivalence for experiments with strong guarantees in the
complex models for rules derived in the simpler model of the equivalence class). The
two objectives can be satisfied simultaneously by introducing properly quantified notions
of comparison and closeness between statistical experiments (which should be intuitively
based on "information"). This was done by Le Cam from the 1950s (with a paper
published finally in 1964) building on ideas of Bohneblust, Shapley, Blackwell, Sherman,
and Stein (among others): the starting point is the realization that one experiment is
"better" than another experiment if the latter can be perfectly approximated, in the sense
of total variation, by a randomization of the former; this yields by symmetrization the
subsequent idea that "two experiments are close if each is well approximated, in the sense
of total variation, by a randomization of the other" (Pollard), with the limiting case of
equivalence by perfect approximation of each by the other (which is equivalent to each
experiment being "better" than the other).
Remark. The idea of randomization is already central in the early ideas for the comparison
of statistical models (the same idea is at the basis of sufficiency for statistics). Random-
ization should be thought "as a mechanism to convert observations from one distribution
into observations from another distribution: sample a 𝑦 from Q, crank up the randomizer,
then out pops an observation 𝑥 from P" (Pollard); for instance, an experiment F can be
obtained from randomization of E if "F is reproducible from E by "tossing coins"" (Le
Cam). This naturally translates in terms of probability kernels (a.k.a. Markov kernels):
that is, we say that E can be obtained from randomization from F if there is a kernel 𝜌
such that

𝜌P = Q

where
𝜌P(𝐴) =

∫
𝐸

𝜌(𝑥, 𝐴) 𝑑P(𝑥)

for all 𝐴 ∈ F . The problem is that the theory of comparison of experiments does not
develop well with probability kernels as tool for randomization due to technical reasons
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of a measure-theoretic nature. This forced Le Cam to define randomization procedures in
greater generality (see vdV SWofLC and Pollard Paris2001 "Randomization") up to the
complete abandonment of the sample spaces. For our purpose (we follow Mariucci), it is
sufficient to impose further constraint on the experiments for the technical difficulties to
disappear. One such solution that cover many cases is to consider experiments where the
underlying space is a Polish metric space and the measures are all commonly dominated
by a 𝜎-finite measure. We should call such experiments Polish dominated and denote
the set of all such experiments on a given parameter space Θ by 𝑆𝑝 (Θ). The equivalence
between Markov kernels and more general randomization procedures à la Le Cam is then
guaranteed (see P.9.2. in Nussbaum (1996)). Note that other topological conditions can be
imposed to guarantee the same equivalence (see Nussbaum (1996) or Pollard Paris2001
"Randomization"). Even if we state all notions for Polish dominated experiments, we
should keep in mind that many of the definitions and results generalize for arbitrary
sample spaces when considering the right notion of randomization procedures.

1 Deficiency and Le Cam distance

Definition 1 (Deficiency). Let Θ be arbitrary set and E = {𝐸, E , {P𝜃 : 𝜃 ∈ Θ}} and
F = {𝐹,F , {Q𝜃 : 𝜃 ∈ Θ}} dominated Polish statistical experiments. The deficiency of
E relative to F is given by1

𝛿(E ,F ) = inf
𝜌

sup
𝜃∈Θ

𝑑𝑇𝑉 (𝜌P𝜃 ,Q𝜃 )

where the infimum runs over all Markov kernels 𝜌 : 𝐸 × F → [0, 1] from (𝐸, E) to
(𝐹,F).

Definition 2 (Le Cam Distance). Let Θ be arbitrary set and E = {𝐸, E , {P𝜃 : 𝜃 ∈ Θ}}
and F = {𝐹,F , {Q𝜃 : 𝜃 ∈ Θ}} dominated Polish statistical experiments. The Le Cam
distance or 𝚫-distance between E and F is given by

Δ(E ,F ) = max{𝛿(E ,F ), 𝛿(F , E )}.

Proposition 3. The Le Cam distance is a pseudo-metric on the set of all Polish dominated
experiments with parameter space Θ.

Proof. See S.9. in Nussbaum (1996) which refers to 59.2 in Strasser (1985). □

Definition 4. Let E and F be Polish dominated statistical experiments for the same
parameter space. Then:

(a) E is said to be better or more informative than F if 𝛿(𝐸, 𝐹) = 0;
(b) E and F are said to be equivalent if Δ(E ,F ) = 0.

Definition 5. Let (E𝑛)𝑛∈N and (F𝑛)𝑛∈N be sequences of Polish dominated statistical
experiments for the same parameter space. The (sequences of ) experiments are said to
be asymptotically equivalent if lim𝑛→∞ Δ(E𝑛,F𝑛) = 0.

1Factors 2 or 1/2 may appear in the definitions and results of other authors involving deficiency, depending
on which convention for total variation is used. In particular, vdV (2002) scales the TV by 2 and hence the
deficiency, whereas Le Cam (1986) scales up the TV by 2 but divides the defiency by 1/2 to be equal to ours.
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The (pseudo)metrics Δ naturally induces a topology on the set 𝑆𝑝 (Θ) of Polish dom-
inated experiments with parameter space Θ. Convergence with respect to this topology
can then be considered. In particular, if (E𝑛)𝑛∈N and (E )𝑛∈N are sequences in 𝑆𝑝 (Θ)
such that lim𝑛→∞ Δ(E𝑛, E ) = 0, then the sequence of experiments (E𝑛)𝑛∈N is said to be
converge to the experiment E , or, by abuse of language, that E𝑛 converges to E . In our
terminology, this is equivalent to the sequences (E𝑛)𝑛∈N and (E )𝑛∈N being asymptotically
equivalent.

2 Interpretation of 𝛿(E ,F ) via risk functions

Theorem 6. Let E and F be Polish dominated statistical experiments for the same
parameter space Θ. Let 𝜀 ≥ 0 and (A,A) be an action space where A is a Polish metric
space and A its Borel 𝜎-algebra. Then

𝛿(E ,F ) ≤ 𝜀

if and only if for every decision rule2 𝜎 : 𝐹 ×A → [0, 1] on F , and every loss function
𝐿 with values in [0, 1], there is a decision rule 𝜌 : 𝐸 × A → [0, 1] on E such that for
every 𝜃 ∈ Θ,

𝑅(𝜃, 𝜌; E , 𝐿) ≤ 𝑅(𝜃, 𝜎; F , 𝐿) + 𝜀,

where 𝑅(𝜃, 𝜌; E , 𝐿) =
∫
𝐸

∫
A
𝐿 (𝜃, 𝑎) 𝑑𝜌(𝑥, 𝑎) 𝑑P𝜃 (𝑥) is the risk function on E relative to

𝐿 and 𝑅(𝜃, 𝜎; E , 𝐿) =
∫
𝐹

∫
A
𝐿 (𝜃, 𝑎) 𝑑𝜌(𝑥, 𝑎) 𝑑Q𝜃 (𝑥) is the risk function associated with

F relative to 𝐿. Moreover, if 𝛿(E ,F ) < 𝜀, then 𝜌 may be chosen independently of 𝐿.

Proof. T.2. in Le Cam (1986), which is already in Le Cam (1964) and equivalently
stated in C.6.4.4. in Torgersen (1991) (with the additional close on 𝐿), for general spaces
and general randomizations. Our formulation is the application to Markov kernels under
Polish domination restriction as in T.2.7. in Mariucci (2016) or in T.7.2 in vdV (2002).
(Mariucci does not state the additional 𝐿 clause whereas vdV directly state the 𝐿 clause
in the equivalence, which is simply a weaker result). See the previous footnote for
explanations of the differences by factors of 2 or 1/2 in the result. □

This implies that

𝛿(E ,F ) = sup
𝜎

inf
𝜌

sup
𝐿

sup
𝜃

|𝑅(𝜃, 𝜌; E , 𝐿) − 𝑅(𝜃, 𝜎; F , 𝐿) |

and, subsequently, that3

Δ(E ,F ) = max
{

sup
𝜎

inf
𝜌

sup
𝐿

sup
𝜃

|𝑅(𝜃, 𝜌; E , 𝐿) − 𝑅(𝜃, 𝜎; F , 𝐿) | ,

sup
𝜌

inf
𝜎

sup
𝐿

sup
𝜃

|𝑅(𝜃, 𝜎; F , 𝐿) − 𝑅(𝜃, 𝜌; E , 𝐿) |
}
.

2Given a statistical model F = {𝐹,F , {Q𝜃 : 𝜃 ∈ Θ}} and an action space (A,A), a decision rule 𝜎

on F is defined as a Markov kernel from (𝐹,F) to (A,A). Some authors call them randomized decision
rules to distinguish them from deterministic decision rules which are the special case when for every 𝑥 ∈ 𝐹,
𝐴 ↦→ 𝜌(𝑥, 𝐴) is the Dirac measure at some point 𝑇 (𝑥) where 𝑇 : 𝐹 → A is some measurable function.

3This is the definition of the Le Cam distance in Giné&Nickl MFIDS p.9.
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3 Strong and weak topology of experiments

The topology induced by the Le Cam (pseudo)distance Δ on the set of (Polish domi-
nated) experiments 𝑆𝑃 (Θ) is said to be the strong topology on 𝑆𝑃 (Θ). As showed in the
previous result, this topology provides excellent guarantees in terms of risk function. It
is, however, possible to define a weak(er) topology on 𝑆𝑃 (Θ), which naturally provides
weaker decision-theoretic guarantees but is sufficient for many important statistical results
(e.g., Hajek–Le Cam convolution and LAM theorems) and appears more often in practice.
The main reason for the usefulness of this weaker topology is that it coincides with the
strong topology when the parameter space Θ is finite, so that the strong decision-theoretic
guarantees then apply.

Definition 7 (Weak Topology of Experiments). LetΘ be an arbitrary set and 𝑆𝑃 (Θ) the set
of Polish dominated experiments with parameter spaceΘ. Denote 𝐴(Θ) the family of finite
subsets of Θ and E𝛼 the restriction of an experiment E to the parameter space 𝛼 ∈ 𝐴(Θ).
The topology induced by the family4 of pseudometrics ((E ,F ) ↦→ Δ(E𝛼,F𝛼))𝛼∈𝐴(Θ)
is said to be the weak topology on 𝑆𝑃 (Θ).

Reference. See S.3.4. in Le Cam (1986), D.59.10. in Strasser (1985), T.7.4.12. in
Torgersen (1991), or Pollard’s Thoughts (2000) p.2. See also remarks in vdV AS p.137.

Proposition 8. The weak topology on 𝑆𝑝 (Θ) is weaker than the strong topology on 𝑆𝑝 (Θ).
If Θ is finite, then the two topologies coincide.

Proof. T.7.4.12. in Torgersen (1991) or T.60.2. in Strasser (1985) p.302. □

The weak topology naturally induces a notion of convergence for (nets and) sequences
of experiments. In particular, a sequence of experiments (E𝑛)𝑛∈N in 𝑆𝑃 (Θ) is said to
weakly converge to an experiment E in 𝑆𝑃 (Θ) if (E𝑛)𝑛∈N converge to E with respect to
the weak topology on 𝑆𝑃 (Θ). As shown next, weak convergence can be expressed through
the restriction of Δ to all finite subsets of Θ. Naturally, this invites us to define weak
version of the notions of better experiments, equivalence, and asymptotic equivalence
through the restriction of 𝛿 and Δ to all finite subsets of Θ.

Proposition 9. A sequence of experiments (E𝑛)𝑛∈N in 𝑆𝑃 (Θ) weakly converges to an
experiment E in 𝑆𝑃 (Θ) if and only if

lim
𝑛→∞

Δ(E𝑛,𝛼 , E𝛼) = 0

for all 𝛼 ∈ 𝐴(Θ).

Proof. T.7.4.12. in Torgersen (1991) or T.60.2. in Strasser (1985) p.302. □

This equivalence works only on the condition that the parameter space Θ is invariant.
If we allow Θ to be a sequence (Θ𝑛)𝑛∈N such that Θ𝑛 → Θ, then weak convergence and
the Δ𝛼 characterization need not coincide (see S.60. in Strasser (1985)).

4A topology induced by a family of functions, also know as an initial topology, is the weakest topology
that makes all the functions in the family continuous. A topology induced by a family of pseudometrics
𝑑 ∈ 𝐷 on a set 𝑋 is the initial topology for the family (𝑥 ↦→ 𝑑 (𝑥, 𝑦))𝑦∈𝑋, 𝑑∈𝐷 (see uniform spaces; e.g.,
p.467 in Strasser (1985)).
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Proposition 10. A sequence of experiments (E𝑛)𝑛∈N in 𝑆𝑃 (Θ) weakly converges if and
only if (E𝑛, 𝛼)𝑛∈N converges for every 𝛼 ∈ 𝐴(Θ). In this case, (lim𝑛→∞ E𝑛)𝛼 is equivalent
to lim𝑛→∞ E𝑛,𝛼 for every 𝛼 ∈ 𝐴(Θ).

Proof. T.60.2. in Strasser (1985) p.302. □

4 Control of the Le Cam distance

The explicit computation of the Le Cam distance is in general difficult, hence the need
for simpler control procedures. We partly follow Mariucci (2016).

4.1 Total variation upper bound

If the statistical models have same sample space, then a simple upper bound in total
variation obtained by taking the Dirac measure in the definition of the deficiency often
suffices for the control of the Le Cam distance. Results on the total variation distance
then come to help to further bound the Le Cam distance.

Proposition 11. Let E = {𝐸, E , {P𝜃 : 𝜃 ∈ Θ}} and F = {𝐹,F , {Q𝜃 : 𝜃 ∈ Θ}} be Polish
dominated statistical experiments for the same parameter space Θ and defined for the
same sample space (𝐸, E) = (𝐹,F). Then

Δ(E ,F ) ≤ sup
𝜃∈Θ

𝑑𝑇𝑉 (P𝜃 ,Q𝜃 ).

Proof. This follows directly by taking the kernel given by the indicator function in the
definition of the deficiency. See P.3.1. in Mariucci (2016) or C.6.2.5. in Torgersen
(1991) or P.59.6. in Strasser p.297. See also (1.13) in Giné&Nickl MFIDS p.9 for
the proof starting with the equivalent characterization of the deficiency in terms of risk
functions. □

4.2 Control by the likelihood ratio process

It turns out that equivalence of experiments can be linked directly to the behavior of
some stochastic processes defined from the likelihood, namely likelihood ratio processes.
This connection is particularly useful due to all the known results on likelihood ratios
for regular enough models. The connection becomes essential when considering the
weak topology of experiments, for then we have complete equivalence between weak
convergence of experiments and weak convergence of the finite-dimensional distributions
of likelihood ratio processes.

Definition 12 (Likelihood Ratio Process). Let Θ be an arbitrary set. Let E = {𝐸, E , {P𝜃 :
𝜃 ∈ Θ}} be a statistical experiment and 𝜗 ∈ Θ. The process (𝐿 𝜃,𝜗)𝜃∈Θ given by

𝐿 𝜃,𝜗 =
𝑑P𝜃
𝑑P𝜗

is said to be the likelihood ratio process from (Pℎ)ℎ∈𝐻 in base 𝜗.

If P𝜃 is absolutely continuous with respect to P𝜗 , then 𝑑Pℎ/𝑑P𝜗 is the Radon–
Nikodym derivative (also known as the likelihood ratio in statistics). If it is not, then
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the Lebesgue decomposition theorem guarantees that P𝜗 = P0 + P1 with P𝜃 ≪ P0
and P𝜃 ⊥ P1, so we define 𝑑P𝜃/𝑑P𝜗 := 𝑑P𝜃/𝑑P0. In each case, the likelihood ratio
𝐿 𝜃,𝜗 : 𝐸 → [0, +∞) for a given 𝜃 can be interpreted as a random variable on (𝐸, E , P𝜗).
Moreover, in both cases (absolute continuity or not), it is always possible to find a finite
measure 𝜇 such that P𝜃 and P𝜗 are absolutely continuous with respect to 𝜇 (for instance,
𝜇 = P𝜃 + P𝜗). Then, if we denote 𝑝𝜃 := 𝑑P𝜃/𝑑𝜇 and 𝑝𝜗 := 𝑑P𝜗/𝑑𝜇 their respective
density with respect to 𝜇, we have (see L.6.2. in vdV AS p.86 or E.1.4. in Strasser MS
p.2 for the general case and P.3.9. in Folland RA p.91 for the absolute continuity case)
that5

𝐿 𝜃,𝜗 =
𝑑P𝜃
𝑑P𝜗

=
𝑝𝜃

𝑝𝜗

(P𝜗-a.e.).

In both cases (absolute continuity or not) and any two formulations (with or without
densities), the likelihood ratio is only uniquely defined P𝜗-a.e..

Proposition 13. Let Θ be an arbitrary set. Let E = {𝐸, E , {P𝜃 : 𝜃 ∈ Θ}} and F =

{𝐹,F , {Q𝜃 : 𝜃 ∈ Θ}} be statistical experiments in 𝑆𝑃 (Θ). Then E and F are equivalent
if and only if 𝑑P𝜃

𝑑P𝜗
and 𝑑Q𝜃

𝑑Q𝜗
have same law for all 𝜗 ∈ Θ.

Proof. C.25.9. in Strasser (1985) p.114 (see also P.3.6. in Mariucci (2016) p.7). □

Proposition 14. Let Θ be an arbitrary set. Let (Λ𝐸
𝜃,𝜗

)𝜃∈Θ and (Λ𝐹
𝜃,𝜗

)𝜃∈Θ be stochastic
processes, where Λ𝐸

𝜃,𝜗
is defined on (𝐸, E , P𝜗) and Λ𝐹

𝜃,𝜗
on (𝐹,F ,Q𝜗). Suppose there

is some coupling Γ for (Λ𝐸
𝜃,𝜗

)𝜃∈Θ and (Λ𝐹
𝜃,𝜗

)𝜃∈Θ. If (Λ𝐸
𝜃,𝜗

)𝜃∈Θ and (Λ𝐹
𝜃,𝜗

)𝜃∈Θ are
equal to the likelihood ratio processes of some experiments E = (𝐸, E , {P𝜃 : 𝜃 ∈ Θ})
and F = {𝐹,F , {Q𝜃 : 𝜃 ∈ Θ}} in 𝑆𝑃 (Θ), then

Δ(E ,F ) ≤ sup
𝜃∈Θ
E Γ

���Λ𝐸
𝜃,𝜗 − Λ𝐹

𝜃,𝜗

���.
Proof. L.6. in Le Cam&Yang (2000) p.30 (see also P.3.7. in Mariucci (2016) p.7). □

Proposition 15. Let Θ be an arbitrary set. A sequence of experiments (E𝑛)𝑛∈N =

((𝐸𝑛, E𝑛, {P𝜃,𝑛 : 𝜃 ∈ Θ}))𝑛∈N in 𝑆𝑃 (Θ) weakly converges to an experiment E =

{𝐸, E , {P𝜃 : 𝜃 ∈ Θ}} in 𝑆𝑃 (Θ) if and only if(
𝑑P𝜃,𝑛

𝑑P𝜗,𝑛

)
𝜃∈𝛼
⇝

(
𝑑P𝜃
𝑑P𝜗

)
𝜃∈𝛼

for all 𝛼 ∈ 𝐴(Θ) and all 𝜗 ∈ 𝛼, where 𝐴(Θ) denotes the family of all finite subsets of Θ.

Proof. T.60.3. in Strasser (1985). See also, for Θ finite, L.5. in Le Cam&Yang (2000)
p.29 (with a standard proof) and L.1. in Pollard’s Thoughts (2000) p.3 (with a different
proof than by the canonical representation); the finite result can then be applied to 𝛼(Θ)
and used with the characterization of weak convergence of experiments in terms of the
restriction of Δ to E𝑛,𝛼. See also S.5. in vdV (2002) for some context. □

5The result is the same P𝜗-a.e. for any dominating 𝜎-finite measure 𝜇.
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