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Quantifying how much a random variable deviates from some value is a problem of
general interest. Often, the value is the mean or the median, in which case the problem
is similar to bounding the tails of the random variable. Concentration inequalities are
useful in themselves as sharp non-asymptotic results quantifying deviation, but they are
also useful as a tool to prove asymptotic results for a larger class of random variables.

Example 1. A motivation for the first point emerges from the classical central limit
theorem. Since a sum of independent random variables is asymptotically normal, we
may expect it to have exponentially decaying tails in the limit. Unfortunately, even if the
sum concentrates well around the mean, the approximation error to the normal decays too
slowly for the exponential decay of the tails to hold. Under some regularity conditions,
we will show that it is actually possible to derive exponential tail bounds for sums of
independent random variables, using more direct methods than the CLT.

The fact that random variable expressible as sums of independent random variables
concentrate well around their mean (with exponentially decaying tails under some mild
conditions) is a phenomenon with deep and far-reaching repercussions (from geometry
to statistics to physics to ...). The extension of this concentration phenomenon (and
its quantification through exponential bounds) to random variables expressible as more
general functions (non necessarily linear) of independent (or weakly dependent) random
variables has been explored in the last decades. A general principle, known as the
concentration of measure phenomenon, stands out:

"If 𝑋1, . . . , 𝑋𝑛 are independent (or weakly dependent) random variables, then
the random variable 𝑓 (𝑋1, . . . , 𝑋𝑛) is "close" to its mean E ( 𝑓 (𝑋1, . . . , 𝑋𝑛))
provided that the function (𝑥1, . . . , 𝑥𝑛) ↦→ 𝑓 (𝑥1, . . . , 𝑥𝑛) is not too "sensitive"
to any of the coordinates 𝑥𝑖 ." (van Handel in APC550)

1 Basic bounds from moments

We start with basic tools. The tail probability P(𝑋 ≥ 𝑡) of a random variable 𝑋
can first be bounded by controlling the moments of 𝑋 . Controlling more moments gives
sharper bounds.

Proposition 2. Let 𝑋 be a positive random variable. Then

E (𝑋) =
∫ ∞

0
P(𝑋 ≥ 𝑡) 𝑑𝑡.
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This generalizes to the following result.

Proposition 3 (Layer Cake Representation). Let 𝑋 be a real random variable and
𝑝 > 0. Then

E ( |𝑋 |𝑝) = 𝑝
∫ +∞

0
𝑡 𝑝−1P( |𝑋 | ≥ 𝑡) 𝑑𝑡.

Proof. This is an application of Fubini’s theorem noting first that |𝑋 |𝑝 =

𝑝
∫ +∞
0 𝑡 𝑝−11 |𝑋 | ≥𝑡 𝑑𝑡. See L.4.4 in Kallenberg FMP p.85 or T.1.13. in Lieb A p.26. □

The case 𝑝 = 1 for positive 𝑋 implies Markov’s inequality by noting that
∫ ∞
0 P(𝑋 ≥

𝑡) 𝑑𝑡 ≥
∫ 𝑎
0 P(𝑋 ≥ 𝑎) 𝑑𝑡 = 𝑎P(𝑋 ≥ 𝑎). Alternatively, 𝑥 = 𝑥1𝑥≥𝑎 + 𝑥1𝑥<𝑎 for any 𝑥 ∈ R,

so that E (𝑋) = E (𝑋1𝑋≥𝑎) + E (𝑋1𝑋<𝑎) ≥ 𝐸 (𝑎1𝑋≥𝑎) = 𝑎P(𝑋 ≥ 𝑎).

Proposition 4 (Markov’s Inequality). Let 𝑋 be a positive random variable. Then for all
𝑡 > 0,

P(𝑋 ≥ 𝑡) ≤ E (𝑋)
𝑡

.

Proof. Above for two proofs. See T.2.1 in Roch MDP p.18. □

From Markov’s inequality, it follows that if 𝜙 is a strictly increasing positive-valued
function, then for any real random variable 𝑋 and all 𝑡 ∈ R,

P(𝑋 ≥ 𝑡) = P(𝜙(𝑋) ≥ 𝜙(𝑡)) ≤ E (𝜙(𝑋))
𝜙(𝑡) .

Applying this inequality for 𝑥 ↦→ 𝑥2 to |𝑋 − E 𝑋 |, we get Chebyshev’s inequality.

Proposition 5 (Chebyshev’s Inequality). Let 𝑋 be a random variable with E (𝑋2) < ∞.
Then for all 𝑡 > 0,

P( |𝑋 − E 𝑋 | ≥ 𝑡) ≤ Var(𝑋)
𝑡2

.

Proof. Above. See T.2.2 in Roch MDP p.19. □

More generally, applying Markov’s inequality for 𝑥 ↦→ 𝑥𝑞 for any 𝑞 > 0 to |𝑋 − E 𝑋 |
where E (𝑋𝑞) < ∞, we get for all 𝑡 > 0,

P( |𝑋 − E 𝑋 | ≥ 𝑡) ≤ E |𝑋 − E 𝑋 |𝑞
𝑡𝑞

.

One can choose 𝑞 so as to minimize the left-side value of the inequality.
A similar idea underlies the Cramér–Chernoff bounding method which yields very

good bounds. Applying Markov’s inequality to 𝑥 ↦→ 𝑒𝜆𝑥 for any 𝜆 ≥ 0 to any random
variable 𝑋 with moment generating function, we get for all 𝑡 ∈ R,

P(𝑋 ≥ 𝑡) ≤ E 𝑒
𝜆𝑋

𝑒𝜆𝑡
.

One can then choose 𝜆 so as to minimize the left-side value fo the inequality.

Proposition 6 (Chernoff’s Bound). Let 𝑋 be a random variable with moment generating
function. Then for all 𝑡 ∈ R,

P(𝑋 ≥ 𝑡) ≤ inf
𝜆≥0

E 𝑒𝜆𝑋

𝑒𝜆𝑡
.
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Proof. Above. See L.2.32. in Roch MDP p.47. □

2 Bounds for sums of independent random variables

The Cramér–Chernoff bounding method applies well for sums of independent real
random variables, for the expected value of a product of independent random variables is
the product of the expected values. Take 𝑋1, . . . , 𝑋𝑛 independent real random variables
and define 𝑆𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 , then we have for all 𝑡 ∈ R,

P(𝑆𝑛 − E 𝑆𝑛 ≥ 𝑡) ≤ inf
𝜆≥0

𝑒−𝜆𝑡
𝑛∏
𝑖=1

E
(
𝑒𝜆(𝑋𝑖−E𝑋𝑖 )

)
(∗)

The objective is then to bound the moment generating functions E (𝑒𝜆𝑋𝑖 ) of the random
variables 𝑋𝑖 . This works well, in particular, for sub-Gaussian random variables (and
thus to bounded random variables) which have by definition bounded moment generating
functions. For completeness, we first bound the moment generating function of bounded
variables (and incidentally prove they are sub-Gaussian), then get a bound for the sum
of independent bounded random variables, and finally a more general bound for sums of
independent sub-Gaussian random variables (both known as Hoeffding’s inequalities).

Lemma 7 (Hoeffding’s Lemma). Let 𝑋 be a random variable withE 𝑋 = 0 and supported
on a finite interval [𝑎, 𝑏]. Then for all 𝑡 ∈ R,

E (𝑒𝑡𝑋) ≤ exp
(
𝑡2(𝑏 − 𝑎)2

8

)
.

Proof. L.2.42. in Roch MDP p.55 or L.8.1. in Lugosi PTPR p.122. □

Proposition 8 (Hoeffding’s Inequality for Bounded Variables). Let 𝑋1, . . . , 𝑋𝑛 be
independent random variables such that 𝑋𝑖 is supported on a finite interval [𝑎𝑖 , 𝑏𝑖].
Define 𝑆𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 . Then for all 𝑡 > 0,

P(𝑆𝑛 − E 𝑆𝑛 ≥ 𝑡) ≤ exp
(
− 2𝑡2∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)
and

P(𝑆𝑛 − E 𝑆𝑛 ≤ −𝑡) ≤ exp
(
− 2𝑡2∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)
.

Proof. Direct application of Chernoff’s bounding method with Hoeffding’s lemma (see
above). See T.2.40 in Roch MDP p.54 or T.8.1. in Lugosi PTPR p.122. □

Proposition 9 (Hoeffding’s Inequality). Let 𝑋1, . . . , 𝑋𝑛 be independent sub-Gaussian
random variables with proxy variance 𝜎2

𝑖
. Define 𝑆𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 . Then for all 𝑡 > 0,

P(𝑆𝑛 − E 𝑆𝑛 ≥ 𝑡) ≤ exp

(
− 𝑡2

2
∑𝑛
𝑖=1 𝜎

2
𝑖

)
and

P(𝑆𝑛 − E 𝑆𝑛 ≤ −𝑡) ≤ exp

(
− 𝑡2

2
∑𝑛
𝑖=1 𝜎

2
𝑖

)
.
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Proof. Direct application of Chernoff’s bounding method with the definition of sub-
Gaussianity (see above). See T.2.39. in Roch MDP p.53. □

Hoeffding’s inequalities are general but do not necessarily leverage all available
information on the variance of the 𝑋𝑖 when it exists. “The inequalities can sometimes be
improved by introducing second moments in the upper bound. Bennett’s one-sided tail
bound provides a particularly elegant illustration of the principle." (Pollard).

Without loss of generality, assume E (𝑋𝑖) = 0. The objective is again to bound
E (𝑒𝜆𝑋𝑖 ) in (∗). Let 𝜓(𝑥) := exp(𝑥) − 𝑥 − 1. Note that 𝜓(𝑥) ≤ 𝑥2/2 for all 𝑥 ≤ 0 and
𝜓(𝜆𝑥) ≤ 𝑥2𝜓(𝜆) for all 𝜆 ≥ 0 and all 𝑥 ∈ [0, 1]. If we assume that the 𝑋𝑖’s are bounded
such that 𝑋𝑖 ≤ 1, one can prove that E (𝑒𝜆𝑋𝑖 ) ≤ exp (𝜓(𝜆)E ( 𝑋2

𝑖
)). Plugging it into (∗)

and minimizing over 𝜆, we get Bennett’s inequality.

Proposition 10 (Bennett’s Inequality). Let 𝑋1, . . . , 𝑋𝑛 be independent real random
variables with E (𝑋2

𝑖
) < ∞. Denote 𝑆𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 and 𝜎2 =

∑𝑛
𝑖=1 E (𝑋2

𝑖
). If 𝑋𝑖 ≤ 𝑏 a.s.

for some positive real 𝑏, then for all 𝑡 > 0,

P(𝑆𝑛 − E 𝑆𝑛 ≥ 𝑡) ≤ exp
(
−𝜎

2

𝑏2 ℎ
( 𝑡
𝜎2

))
where ℎ(𝑢) = (1 + 𝑢) ln(1 + 𝑢) − 𝑢 for all 𝑢 ≥ 0.

Proof. Above. See T.17. in Pollard’s Mini2 notes or T.2.9. in Massart CI p.35. □

By applying the inequality ℎ(𝑢) ≥ 𝑢2/(2 + 2𝑢/3) for all 𝑢 ≥ 0 (the right side term is
the (2, 1)-Padé approximation of ℎ(𝑢) at 𝑢 = 0 – the inequality can be obtained by taking
the second derivative of the difference), we obtain a weaker result.

Proposition 11 (Bernstein’s Inequality 1). Let 𝑋1, . . . , 𝑋𝑛 be independent real random
variables with E (𝑋2

𝑖
) < ∞. Denote 𝑆𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 and 𝜎2 =

∑𝑛
𝑖=1 E (𝑋2

𝑖
). If 𝑋𝑖 ≤ 𝑏 a.s.

for some positive real 𝑏, then for all 𝑡 > 0,

P(𝑆𝑛 − E 𝑆𝑛 ≥ 𝑡) ≤ exp
(
− 𝑡2

2(𝜎2 + 𝑏𝑡/3)

)
.

Proof. Above. See 22. in Pollard’s Mini2 notes or C.2.11. in Massart CI p.38. □

If𝜎2 < 𝑡, then the upper bound behaves like 𝑒−𝑡 instead of the stronger 𝑒−𝑡2 guaranteed
by Hoeffding’s inequality. Intuitively, this is a manifestation of the approximation of
binomial B(𝑛, 𝜃/𝑛) by Poisson P (𝜃) whose tail decreases as 𝑒−𝜃 .

The finiteness of the second moment and the boundedness of 𝑋𝑖 imply a condition on
the growth of E ( |𝑋𝑖 |𝑘) for 𝑘 ≥ 2, namely P( |𝑋𝑖 |𝑘) ≤ E (𝑋2

𝑖
)𝑏𝑘−2 for 𝑘 ≥ 2. A weaker

assumption on this growth, without assuming boundedness of 𝑋𝑖 , yields a useful bound
on the moment generating function of 𝑋𝑖 as well as a more general Bernstein’s inequality.

Proposition 12 (Bernstein’s Inequality 2). Let 𝑋1, . . . , 𝑋𝑛 be independent real random
variables with E (𝑋2

𝑖
) < ∞. Denote 𝑆𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 and 𝜎2 =

∑𝑛
𝑖=1 E (𝑋2

𝑖
). If there is

some positive real 𝐵 such that E ( |𝑋𝑖 |𝑘) ≤ 1
2E (𝑋

2
𝑖
)𝐵𝑘−2𝑘! for all 𝑘 ≥ 2, then for all

𝑡 > 0,
P(𝑆𝑛 − E 𝑆𝑛 ≥ 𝑡) ≤ 𝑒−𝐻2 (𝑥,𝐵,𝜎2 ) ≤ 𝑒−𝐻1 (𝑥,𝐵,𝜎2 ) ,
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where

𝐻1(𝑥, 𝐵, 𝜎2) = 𝑡2/𝜎2

2(1 + 𝑡𝐵/𝜎2)
,

𝐻2(𝑥, 𝐵, 𝜎2) = 𝑡2/𝜎2

1 + 𝑡𝐵/𝜎2 +
√︁

1 + 2𝑡𝐵/𝜎2
.

Proof. See T.23. in Pollard’s Mini2 notes. The moment inequality is used to bound the
moment generating function: one can prove that for𝜆 ∈ [0, 1/𝐵),E (𝜓(𝜆𝑋𝑖)) ≤ 1

2
E (𝑋2

𝑖
)𝜆2

1−𝐵 ,

so that E (𝑒𝜆𝑋𝑖 ) ≤ 1+𝜆E ((𝑋𝑖)) + 1
2
E (𝑋2

𝑖
)𝜆2

1−𝐵𝜆 ≤ exp
(
𝜆E (𝑋𝑖) + 1

2
E (𝑋2

𝑖
)𝜆2

1−𝐵𝜆

)
for 0 ≤ 𝜆𝐵 < 1.

We then proceed as usual by plugging the bound into (∗) and minimizing over 𝜆 (correctly
and incorrectly, see the comment of Pollard on Bennett). □

3 Martingale-based methods

To get bounds for more general functions than sums (of independent random vari-
ables), several methods have been developed. One is based on martingale decompositions.

We recall that a (discrete-time) martingale is a sequence ((𝑌𝑛,F𝑛))𝑛∈N∗ where the
F𝑛’s are 𝜎-algebras such that F𝑛 ⊆ F𝑛+1 for all 𝑛 ≥ 0 and the 𝑌𝑛 are integrable, F𝑛-
measurable random variables such that E (𝑌𝑛+1 |F𝑛) = 𝑌𝑛 a.s.. (We alternatively say that
(𝑌𝑛)𝑛∈N∗ is a martingale with respect to the filtration (F𝑛)𝑛∈N∗ .) This is equivalent to
consider the martingale difference sequence ((Δ𝑛,F𝑛))𝑛∈N defined by the conditions
that the Δ𝑛+1 = 𝑌𝑛+1 − 𝑌𝑛’s are integrable, F𝑛-measurable such that E (Δ𝑛+1 |F𝑛) = 0 a.s.
In this case, 𝑌𝑛 = 𝑌0 +Δ1 +Δ2 + · · · +Δ𝑛 = 𝑌𝑛−1 +Δ𝑛, or equivalently, 𝑌𝑛 −𝑌0 =

∑𝑚
𝑖=1 Δ𝑖 .

For simplicity, we take F0 to be the trivial 𝜎-algebra, so that 𝑌0 = 𝜇 = E (𝑌𝑛) for all
𝑛 ≥ 0. Sums of independent, mean zero random variables are examples of martingales: if
𝑋1, 𝑋2, . . . is a sequence of independent random variables with E 𝑋𝑖 = 0 for all 𝑖, then the
partial sums 𝑆𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 form a martingale with respect to the natural filtration generated

by the 𝑋𝑛’s; indeed, E (𝑆𝑛+1 |F𝑛) = E (𝑆𝑛 + 𝑋𝑛+1 |F𝑛) = E (𝑆𝑛 |F𝑛) + E (𝑋𝑛+1 |F𝑛) =

𝑆𝑛 + E (𝑋𝑛+1) = 𝑆𝑛.

"The importance of martingales in modern probability stems at least in part
from the fact that most of the essential properties of sums of independent [...]
random variables are inherited (with minor modification) by martingales."
(Lalley)

The concentration inequalities from last section can be proved to hold for martingales.
The results can be equivalently stated for 𝑌𝑛 − 𝑌0 or for

∑𝑛
𝑖=1 Δ𝑖 . The results can be

obtained by "conditional analogs of the moment generating function technique [used
previously], with just a few precautions to avoid problems with negligible sets." (Pollard)
The precautions consist in resorting to the version of the moment generating function
of Δ𝑖 obtained from its regular conditional distribution (whose existence is guaranteed),
when applying the Cramér–Chernoff bounding method. (Most authors gloss over these
technicalities – see Pollard’s Mini3 notes for details.)

Proposition 13 (Azuma–Hoeffding Inequality). Let (𝑍𝑛)𝑛∈N∗ be a martingale with
respect to a filtration (F𝑛)𝑛∈N∗ . Suppose that there exist predictable processes (𝐴𝑛)𝑛∈N
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and (𝐵𝑛)𝑛∈N (i.e., 𝐴𝑛, 𝐵𝑛 are F𝑛−1 measurable) and strictly positive constants (𝑐𝑛)𝑛∈N
such that for all 𝑛 ∈ N, a.s.,

𝐴𝑛 ≤ 𝑍𝑛 − 𝑍𝑛−1 ≤ 𝐵𝑛 and 𝐵𝑛 − 𝐴𝑛 ≤ 𝑐𝑛.

Then for all 𝑡 > 0,

P

(
sup

0≤𝑖≤𝑛
(𝑍𝑖 − 𝑍0) ≥ 𝑡

)
≤ exp

(
− 2𝑡2∑𝑛

𝑖=0 𝑐
2
𝑖

)
Proof. T.3.52 in Roch MDP p.117 or C.2.20 in Wainwright HDS p.36 or T.9.1. in Lugosi
PTPR p.135 or C.3.9. in van Handel APC550 p.51. □

By taking the inequality for (−𝑍𝑛)𝑛∈N∗ yields a bound in the other direction.
In the Azuma–Hoeffding inequality, the difference sequence (Δ𝑛)𝑛∈N is not only

pairwise uncorrelated E (Δ𝑖Δ 𝑗) = 0 for all 𝑖 ≠ 𝑗 but also mutually uncorrelated in the
sense E (Δ𝑖1 . . .Δ𝑖𝑘 ) for all 𝑘 ∈ N and all 𝑖1, . . . , 𝑖𝑛 ∈ N. This is part of the reason why
the sum 𝑍𝑛 − 𝑍0 =

∑𝑛
𝑖=1 is so well concentrated (see E.3.1. in Roch MDP for a different

proof of the Azuma–Hoeffding inequality).

Proposition 14 (Doob Martingale). Let (F𝑛)𝑛∈N∗ be a filtration and𝑌 a random variable
with E |𝑌 | < +∞. For all 𝑛 ∈ N∗, define 𝑍𝑛 = E (𝑌 |F𝑛). Then (𝑍𝑛)𝑛∈N∗ is a martingale
with respect to (F𝑛)𝑛∈N∗ known as the Doob martingale.

Proof. E |𝑍𝑛 | ≤ E |𝑌 | < +∞ and E (𝑍𝑛 |F𝑛−1) = E (𝑌 |F𝑛−1) = 𝑍𝑛−1. □

The Doob martingale can be used with the Azuma–Hoeffding inequality to ob-
tain a first manifestation of the concentration of measure phenomenon. To see
this, consider the Doob martingale with 𝑌 = 𝑓 (𝑋1, . . . , 𝑋𝑛), where (𝑋1, . . . , 𝑋𝑛)
are independent random variables with values in arbitrary spaces X1, . . . ,X𝑛 and
𝑓 : X1 × · · · × X𝑛 → R is measurable such that E | 𝑓 (𝑋1, . . . , 𝑋𝑛) | < +∞, and filtra-
tion given by F0 the trivial 𝜎-algebra and F𝑖 = 𝜎(𝑋1, . . . , 𝑋𝑖) for all 1 ≤ 𝑖 ≤ 𝑛. Note that
𝑍𝑛 = E ( 𝑓 (𝑋1, . . . , 𝑋𝑛) |𝜎(𝑋1, . . . , 𝑋𝑛)) = 𝑓 (𝑋1, . . . , 𝑋𝑛) and 𝑍0 = E ( 𝑓 (𝑋1, . . . , 𝑋𝑛)),
so that

𝑓 (𝑋1, . . . , 𝑋𝑛) − E ( 𝑓 (𝑋1, . . . , 𝑋𝑛)) = 𝑍𝑛 − 𝑍0.

It is then possible to relate the martingale difference 𝑍𝑖 − 𝑍𝑖−1 to the discrete derivatives
of the function 𝑓 : X1 × · · · × X𝑛 → R defined as

𝐷𝑖 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛) := sup
𝑦∈X𝑖

𝑓 (𝑥1, . . . , 𝑥𝑖1 , 𝑦, 𝑥𝑖+1, . . . , 𝑥𝑛)

− inf
𝑦′∈X𝑖

𝑓 (𝑥1, . . . , 𝑥𝑖1 , 𝑦
′, 𝑥𝑖+1, . . . , 𝑥𝑛).

Take 𝑋 ′ = (𝑋 ′
1, . . . , 𝑋

′
𝑛) an independent copy of 𝑋 = (𝑋1, . . . , 𝑋𝑛), and let 𝑋 (𝑖) =

(𝑋1, . . . , 𝑋𝑖−1, 𝑋
′
𝑖
, 𝑋𝑖+1, . . . , 𝑋𝑛). Then

𝑍𝑖 − 𝑍𝑖−1 = E ( 𝑓 (𝑋) |F𝑖) − E ( 𝑓 (𝑋) |F𝑖−1)
= E ( 𝑓 (𝑋) |F𝑖) − E ( 𝑓 (𝑋 (𝑖) ) |F𝑖−1)
= E ( 𝑓 (𝑋) |F𝑖) − E ( 𝑓 (𝑋 (𝑖) ) |F𝑖)
= E ( 𝑓 (𝑋) − 𝑓 (𝑋 (𝑖) ) |F𝑖).
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Let us write 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑥−𝑖 = (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛). By definition of the
supremum we have

| 𝑓 (𝑋) − 𝑓 (𝑋 (𝑖) ) | ≤ | sup
𝑥,𝑦𝑖

( 𝑓 (𝑥) − 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑦𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛)) |

≤ sup
𝑥−𝑖

| sup
𝑥𝑖 ,𝑦𝑖

( 𝑓 (𝑥) − 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑦𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛)) |

= ∥𝐷𝑖 𝑓 ∥∞
(≤ sup

𝑥,𝑦𝑖

| 𝑓 (𝑥) − 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑦𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛) |),

so that by Jensen’s inequality we have

|𝑍𝑖 − 𝑍𝑖−1 | ≤ ∥𝐷𝑖 𝑓 ∥∞.

Then if ∥𝐷𝑖 𝑓 ∥∞ < +∞ for all 𝑖, we can apply the Azuma–Hoeffding inequality to get
bounds on 𝑍𝑛 − 𝑍0. This is the content of McDiarmid’s inequality. (A more careful
analysis leads to an improvement by a factor of 4 in the exponent of the bound.)

Proposition 15 (McDiarmid’s Inequality). Let 𝑋1, . . . , 𝑋𝑛 be independent random vari-
ables with values in X1, . . . ,X𝑛 and 𝑓 : X1 × · · · × X𝑛 → R a measurable such that
∥𝐷𝑖 𝑓 ∥∞ < +∞ for all 1 ≤ 𝑖 ≤ 𝑛. Then for all 𝑡 > 0,

P( 𝑓 (𝑋1, . . . , 𝑋𝑛) − E ( 𝑓 (𝑋1, . . . , 𝑋𝑛)) ≥ 𝑡) ≤ exp
(
− 2𝑡2∑𝑛

𝑖=1 ∥𝐷𝑖 𝑓 ∥2
∞

)
.

Proof. Above (for a weaker bound). (For the stated bound,) see T.3.61. in Roch MDP
p.125 or T.3.41. in van Handel APC550 p.52 or T.9.2. in Lugosi PTPR p.136 (the latter
for a slightly weaker result, as explained below). □

We can again apply the inequality to − 𝑓 to get a tail bound in the other direction.
Note that McDiarmid’s inequality is often stated under a stronger condition on 𝑓 , known
as bounded differences: a function 𝑓 is said to have bounded differences if there exist
positive constants 𝑐𝑖 such that

sup
𝑥,𝑦𝑖

| 𝑓 (𝑥) − 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑦𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛) | ≤ 𝑐𝑖 , 1 ≤ 𝑖 ≤ 𝑛.

As shown above, the property of bounded differences implies the finiteness of ∥𝐷𝑖 𝑓 ∥∞
for all 𝑖. If we introduce the weighted Hamming metric 𝑑𝑐 (𝑥, 𝑦) =

∑𝑛
𝑖=1 𝑐𝑖1𝑥𝑖≠𝑦𝑖 , then it

possible to show that the finiteness of ∥𝐷𝑖 𝑓 ∥∞ for all 𝑖 is equivalent to 𝑓 being 1-Lipschitz
with respect to 𝑑𝑐 (see L.4.5. in van Handel APC550 p.74).

4 Entropy methods

The sub-Gaussian property does not behave well under tensorization. The martingale-
based method used "a sort of poor man’s tensorization [of the sub-Gaussian] property
for sums of martingale increments" (van Handel ACP550 p. 51). (Recall that the big
idea is to use tensorization to reduce the problem to the 1-dimensional case.) To develop
better bounds, the objective is to find a formulation of the sub-Gaussian property that
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behaves well under tensorization. The idea is to use the sub-Gaussian characterization
𝑑
𝑑𝜆
𝜆−1𝜓(𝜆) ≲ 1 where 𝜓 is the log-moment generating function.

Definition 16 (𝜙-Entropy). Let X + the space of positive integrable random variables
and 𝜙 : R+ → R a convex function. The functional 𝐻𝜙 : X + → R+ ∪ {+∞} defined such
that for all 𝑋 ∈ X +,

𝐻𝜙 (𝑋) = E (𝜙(𝑋)) − 𝜙(E (𝑋))

is said to be the 𝝓-entropy.

By Jensen’s inequality, the 𝜙-entropy is indeed a positive functional and it is finite
if and only if X + is restricted to the space of positive integrable random variables 𝑋
such that E ( |𝜙(𝑋) |) < +∞. The entropy is a measure of variability: in particular, we
have 𝐻𝜙 (𝑋) = 0 if and only if 𝑋 = E (𝑋) (a.s.). The 𝜙-entropy with 𝜙 = 𝑥 ↦→ 𝑥2 is
nothing more than the variance. If we restrict attention to random variables 𝑌 = 𝑒𝜆𝑋,
the 𝜙-entropy with 𝜙 = 𝑥 ↦→ − ln(𝑥) is the centered log-moment generating function. In
what follows, we should focus only on the 𝜙-entropy with 𝜙 = 𝑥 ↦→ 𝑥 ln 𝑥 that we should
simply denote 𝐻 and call entropy, that is, for any 𝑋 ∈ X +,

𝐻 (𝑋) = E (𝑋 ln 𝑋) − E (𝑋) lnE (𝑋).

Proposition 17 (Herbst Argument). Let 𝑋 be a random variable with cumulative moment
function. If for all 𝜆 ≥ 0,

𝐻 (𝑒𝜆𝑋) ≤ 𝜆2𝜎2

2
E (𝑒𝜆𝑋),

then for all 𝜆 ≥ 0,

lnE (𝑒𝜆(𝑋−E𝑋) ) ≤ 𝜆2𝜎2

2
.

Proof. L.3.13. in van Handel APC550 p.56 or P.3.2. in Wainwright HDS p.60 or S.5.2.
in BLM CI p.121. □

If the assumption in the Herbst argument is satisfied for all 𝜆 ∈ R, then applying the
result to −𝑋 shows that 𝑋 is sub-Gaussian. (It can be proved that, up to constant factor,
the converse holds.) The assumed bound on the entropy can thus be interpreted as an-
other characterization of sub-Gaussianity. The benefit then comes from the tensorization
property (also known as the sub-additivity property) of the entropy (property shared with
many other 𝜙-entropy such as the variance).

Let 𝑋1, . . . , 𝑋𝑛 be independent random variables with values in X1, . . . ,X𝑛 and
𝑓 : X1 × · · · × X𝑛 → R+ a measurable function. Define for each 1 ≤ 𝑖 ≤ 𝑛 the function
𝐻𝑖 by

𝐻𝑖 ( 𝑓 (𝑋1, . . . , 𝑋𝑛)) = 𝐻 ( 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑋𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛)).

Proposition 18 (Entropy Tensorization). Let 𝑋1, . . . , 𝑋𝑛 be independent random vari-
ables with values in X1, . . . ,X𝑛 and 𝑓 : X1 × · · · × X𝑛 → R+ a measurable function.
Then

𝐻 ( 𝑓 (𝑋1, . . . , 𝑋𝑛)) ≤ E
( 𝑛∑︁
𝑖=1

𝐻𝑖 ( 𝑓 (𝑋1, . . . , 𝑋𝑛))
)
.

Proof. T.3.14. in van Handel APC550 p.57 or T.4.10. in BLM CI p.94. □
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Lemma 19. Let 𝐷− 𝑓 := 𝑓 − inf 𝑓 . Then

𝐻 (𝑒 𝑓 ) ≤ cov( 𝑓 , 𝑒 𝑓 ) ≤ E ( |𝐷− 𝑓 |2𝑒 𝑓 ).

Proof. L.3.16. in van Handel APC550 p.58. □

For a function 𝑓 : X1 × . . .X𝑛 → R, define the one-sided discrete derivatives

𝐷−
𝑖 𝑓 (𝑥) := 𝑓 (𝑥1, . . . , 𝑥𝑛) − inf

𝑦𝑖
𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑦𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛),

𝐷+
𝑖 𝑓 (𝑥) := sup

𝑦𝑖

𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑦𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛) − 𝑓 (𝑥1, . . . , 𝑥𝑛).

Proposition 20 ((Improved) Bounded Differences Inequality). Let 𝑋1, . . . , 𝑋𝑛 be in-
dependent random variables with values in X1, . . . ,X𝑛 and 𝑓 : X1 × · · · × X𝑛 → R a
measurable function.

1. If ∥
∑𝑛
𝑖=1 |𝐷−

𝑖
𝑓 |2∥∞ < +∞, then for all 𝑡 ≥ 0,

P( 𝑓 (𝑋1, . . . , 𝑋𝑛) − E ( 𝑓 (𝑋1, . . . , 𝑋𝑛)) ≥ 𝑡) ≤ exp
(
− 𝑡2

4∥
∑𝑛
𝑖=1 |𝐷−

𝑖
𝑓 |2∥∞

)
.

2. If ∥
∑𝑛
𝑖=1 |𝐷+

𝑖
𝑓 |2∥∞ < +∞, then for all 𝑡 ≥ 0,

P( 𝑓 (𝑋1, . . . , 𝑋𝑛) − E ( 𝑓 (𝑋1, . . . , 𝑋𝑛)) ≤ −𝑡) ≤ exp
(
− 𝑡2

4∥
∑𝑛
𝑖=1 |𝐷+

𝑖
𝑓 |2∥∞

)
,

Proof. T.3.18. in van Handel APC550 p.59 or T.6.7. in BLM CI p.176. □

5 Metric perspective and transportation methods

In the entropy approach, we noticed the connection between bounding the (dis-
crete) gradient of 𝑓 and 𝑓 being Lipschitz when generating concentration inequalities
for 𝑓 (𝑋1, . . . , 𝑋𝑛) where 𝑋1, . . . , 𝑋𝑛 are independent. Both properties encapsulate the
idea that 𝑓 should not be too sensitive to any of its coordinates. If the two properties are
sometimes equivalent, it is not always the case, so that developing "a metric viewpoint
that emphasizes the role of Lipschitz functions" (van Handel) proves useful. For 𝐾 ≥ 0,
let us write Lip𝐾 (𝐸, 𝑑) the space of real-valued 𝐾-Lipschitz functions from a metric
space (𝑋, 𝑑). That is, 𝑓 : 𝐸 → R is in Lip𝐾 (𝐸, 𝑑) if and only if for all 𝑥, 𝑦 ∈ 𝐸 ,

| 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐾𝑑 (𝑥, 𝑦).

Equivalently, 𝑓 is in Lip𝐾 (𝐸, 𝑑) if and only if

∥ 𝑓 ∥Lip := sup
𝑥≠𝑦

| 𝑓 (𝑥) − 𝑓 (𝑦) |
𝑑 (𝑥, 𝑦) ≤ 𝐾.

Remark. "There is an entirely different approach to investigating Lipschitz concentration
properties that played an important role in the historical development of this area: the
isoperimetric method. [...] Mathematical phenomena relating the size of a set to the size
of its boundary are generally referred to as “isoperimetric problems.” [...] Isoperimetric
inequalities are equivalent to tail bounds for Lipschitz functions. However, unlike most
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of our previous results [...], the deviation here is from the median rather than from the
mean. It turns out that deviation inequalities from the median and the mean are equivalent,
however, up to constants." (P.4.2. in van Handel APC550 p.79).

We already know from Gaussian concentration and McDiarmid’s inequality that: if
𝑋 ∼ 𝑁 (0, 1), then 𝑓 (𝑋) is sub-Gaussian with proxy variance 1 for every 𝑓 ∈ 𝐿1(R𝑛, ∥ · ∥);
if 𝑋 is a random vector with independent entries, then 𝑓 (𝑋) is sub-Gaussian with proxy
variance ∥𝑐∥2/4 for every 𝑓 ∈ Lip1(𝐸1 × . . . 𝐸𝑛, 𝑑𝑐). Then the general question we ask
is: for which probability measure 𝜇 on a metric space (𝐸, 𝑑) does it hold that if P𝑋 = 𝜇,
then 𝑓 (𝑋) is sub-Gaussian for every 𝑓 ∈ Lip1(𝐸, 𝑑)?

To answer this question, we need some new objects. Given a metric space (𝐸, 𝑑),
recall first that M1(𝐸) is the space of Borel probability measures on 𝐸 . Let us then define
for 𝑝 ∈ [1, +∞) the space

P𝑝 (𝐸, 𝑑) =
{
𝜇 ∈ M1(𝐸) :

∫
𝐸

𝑑 (𝑥0, 𝑥) 𝑝 𝑑𝜇(𝑥) < +∞
}

where 𝑥0 ∈ 𝐸 is arbitrary (the finiteness of the integral does not depend on the choice of
𝑥0 so that the space itself does not depend on the choice of 𝑥0).

Definition 21 (Relative Entropy). Let 𝜇 and 𝜈 be probability measures on a measurable
space (𝐸, E). The function 𝐷 (·∥·) defined by

𝐷 (𝜈∥𝜇) =

𝐻

(
𝑑𝜈
𝑑𝜇

)
if 𝜈 ≪ 𝜇,

+∞ otherwise

is said to be the relative entropy of 𝜈 relative to 𝜈.

If 𝜈 ≪ 𝜇, then

𝐷 (𝜈∥𝜇) =
∫
𝐸

ln
(
𝑑𝜈

𝑑𝜇

)
𝑑𝜈

𝑑𝜇
𝑑𝜇 −

(∫
𝐸

𝑑𝜈

𝑑𝜇
𝑑𝜇

)
ln

(∫
𝐸

𝑑𝜈

𝑑𝜇
𝑑𝜇

)
=

∫
𝐸

ln
(
𝑑𝜈

𝑑𝜇

)
𝑑𝜈

𝑑𝜇
𝑑𝜇,

since by definition
∫
𝐸

𝑑𝜈
𝑑𝜇
𝑑𝜇 = 𝜈(𝐸) = 1. Equivalently,

𝐷 (𝜈∥𝜇) =
∫
𝐸

ln
(
𝑑𝜈

𝑑𝜇

)
𝑑𝜈

𝑑𝜇
𝑑𝜇 =

∫
𝐸

ln
(
𝑑𝜈

𝑑𝜇

)
𝑑𝜈.

Lemma 22. 𝐷 (𝜈∥𝜇) ≥ 0 and 𝐷 (𝜈∥𝜇) = 0 if and only if 𝜇 = 𝜈 a.e..

Proof. L.5.3. in Rassoul-Agha and Seppalainen CLDIGB p.68. □

Relative entropy provides a notion of "distance" between probability measures, but it
is not properly a distance since it is not symmetric and even the symmetric sum does not
satisfy the triangle inequality. The relative entropy is part of a general classes of "statistical
distances" known as divergences (hence the notation). In particular, the relative entropy is
also called the Kullback–Leibler divergence. In information theory, it is more customary
to denote the entropy by Ent and the relative entropy directly by 𝐻.
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Lemma 23 (Chain Rule for Relative Entropy). Let 𝜇 and 𝜈 be probability measures on
a measurable space (𝐸, E). Let F a sub-𝜎-algebra of E and 𝜇F and 𝜈F the restrictions
of 𝜇 and 𝜈 to F . Suppose there exist regular conditional probability measures of 𝜇 and
𝜈 given F , that is, 𝜇𝑥 (·) := 𝜇(·|F) (𝑥) and 𝜈𝑥 (·) := 𝜈(·|F) (𝑥) for all 𝑥 ∈ 𝐸 . Then

𝐷 (𝜈∥𝜇) = 𝐷 (𝜈F ∥𝜇F ) +
∫
𝐸

𝐷 (𝜈𝑥 ∥𝜇𝑥) 𝑑𝜇(𝑥).

Proof. T.D.13. in Dembo and Zeitouni LDTA p.357 or E.5.13. in Rassoul-Agha and
Seppalainen CLDIGB p.72 or L.4.18. in van Handel APC550 p.86. □

Lemma 24 (Gibbs Variational Principle (Donsker–Varadhan, 1975)). Let (𝐸, 𝑑) be a
metric space. Then for all 𝜇, 𝜈 ∈ M1(𝐸),

𝐷 (𝜈, 𝜇) = sup
𝑓 ∈𝐶𝑏 (𝐸 )

(
E 𝜈 ( 𝑓 ) − lnE 𝜇 (𝑒 𝑓 )

)
Proof. T.5.6. in Rassoul-Agha and Seppalainen CLDIGB p.70 or L. 6.2.13. in Dembo
and Zeitouni LDTA p.264 or L.4.10. in van Handel APC550 p.77. □

See S.3.3 in Polyanskiy and Wu’s notes on Information Theory p.37 for explanations
why more generally variational characterizations of divergences are useful.

Definition 25 (Kantorovich–Rubinstein Distance). Let (𝐸, 𝑑) be a metric space. The
function𝑊1 : P1(𝐸, 𝑑) × P1(𝐸, 𝑑) → R+ defined for all 𝜇, 𝜈 ∈ P1(𝐸, 𝑑) by

K(𝜇, 𝜈) = sup
𝑓 ∈Lip1 (𝐸,𝑑)

����∫ 𝑓 𝑑𝜇 −
∫

𝑓 𝑑𝜈

����
is said to be the Kantorovich–Rubinstein distance.

The metric K thus allows for the comparison of probability measures (by comparing
the expectation of Lipschitz functions under different distributions). This choice is
not arbitrary but originates from optimal transport. This origin is not anecdotal but
provides deep results which are then put to great use in the manipulation of K to generate
concentration inequalities. As such, it makes sense to introduce the theory in more details.

5.1 Optimal transport in 3 minutes

The general objective in optimal transport is to move goods or matter from a certain
distribution to another distribution with minimal cost (the distributions are normalized as
probability measures to encapsulate the fact that nothing is lost during transport). This
translates into the (primal) Monge–Kantorovich problem in which we try to find

𝐶 (𝜇, 𝜈) = inf
𝛾∈Γ (𝜇,𝜈)

∫
𝐸×𝐸

𝑐(𝑥, 𝑦) 𝑑𝛾(𝑥, 𝑦).

In other words, the goal is to find the minimal transport cost by selecting an optimal
(randomized) transport policy (which takes the form of a coupling, which can be further
decomposed into 𝜇 and a probability kernel 𝜅 yielding the distribution at arrival condi-
tional on initial measured masses). (This formulation of the problem encompasses the
too restricting Monge problem in which the policy function takes the form of a mapping
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𝑇 : 𝐸 → 𝐸 such that 𝑇#𝜇 = 𝜈.) The Kantorovich problem is nothing more than an
(infinite dimensional) linear program: the objective is to minimize the linear functional
𝛾 ↦→

∫
𝑐 𝑑𝛾 under the affine constraints 𝜋1

#𝛾 = 𝜇, 𝜋2
#𝛾 = 𝜈, and 𝛾 > 0.

As a linear program, the problem admits a (Lagrangian) dual representation (and
interpretation). The dual Kantorovich problem can be defined as trying to find

𝑃(𝜇, 𝜈) = sup
𝜙∈𝐿1 (𝜈) ,𝜓∈𝐿1 (𝜇):
𝜙 (𝑦)−𝜓 (𝑥 )≤𝑐 (𝑥,𝑦)

(∫
𝐸

𝜙(𝑦) 𝑑𝜈(𝑦) −
∫
𝐸

𝜓(𝑥) 𝑑𝜇(𝑥)
)
.

That is, the goal is to find the maximal transport profit ("price times quantity at selling
minus price times quantity at buying") by selecting (under a competitive cost constraint)
some optimal pricing functions (one for buying and the other for selling). It can be showed
that the cost constraint allows us to express one optimal price function in terms of the
other (see Villani OTON p.66), so that only one pricing function need to be considered
in the problem.

If we then take 𝑐 = 𝑑 in the (modified) dual problem, the cost constraint naturally
translates into a Lipschitz condition and we get back the Kantorovich–Rubinstein distance
K. If in the primal problem, we take 𝑐 = 𝑑 𝑝 for 𝑝 ∈ [1, +∞), then we get (under
separability) a distance on P𝑝 (𝐸, 𝑑) whose 𝑝th root is called the Wasserstein distance of
order 𝑝 and denoted 𝑊𝑝. In the case 𝑝 = 1, it can be showed (under separability) that
K = 𝑊1. In other words, K can be interpreted as the dual representation of𝑊1.

Proposition 26 (Wasserstein Distance). Let (𝐸, 𝑑) be a metric space and 𝑝 ∈ [1, +∞).
Let E be a 𝜎-algebra on 𝐸 such that 𝑑 is E × E measurable. Define the function 𝑊𝑝 for
all probability measures 𝜇, 𝜈 on (𝐸, E) by

𝑊𝑝 (𝜇, 𝜈) =
(

inf
𝛾∈Γ (𝜇,𝜈)

∫
𝐸×𝐸

𝑑 (𝑥, 𝑦) 𝑝 𝑑𝛾(𝑥, 𝑦)
)1/𝑝

,

where Γ(𝜇, 𝜈) is the set of all probability measures on (𝐸 × 𝐸, E × E) with marginals
𝜇 and 𝜈. If (𝐸, 𝑑) is separable and E = B(𝐸, 𝑑), then 𝑊𝑝 is a well-defined function
(possibly infinite) on M1(𝐸, 𝑑) ×M1(𝐸, 𝑑) whose restriction to P𝑝 (𝐸, 𝑑) ×P𝑝 (𝐸, 𝑑)
defines a metric called the Wasserstein distance of order 𝑝 (and also denoted𝑊𝑝).

Proof. If 𝐸 separable and E = B(𝐸), then E × E = B(𝐸) ×B(𝐸) = B(𝐸 × 𝐸) so that 𝑑 is
E × E measurable since continuous, hence𝑊𝑝 is well-defined on M1(𝐸, 𝑑) ×M1(𝐸, 𝑑).
See D.6.1. in Villani OTON p.105 for positivity, finiteness, symmetry, and separation
of the restriction (Villani assumes completeness but the proof for these properties does
not use it – see remark in Villani OTON p.120). The triangle inequality is usually
proved by disintegration which requires inner regularity (which obtains for instance under
completeness). For a proof under separability only, see Clement and Desch (2008). □

Equivalently, in a more probabilistic flavor,

𝑊𝑝 (𝜇, 𝜈) =
(

inf
𝑋∼𝜇,𝑌∼𝜈

E (𝑑 (𝑋,𝑌 ) 𝑝)
)1/𝑝

,

where the infimum is taken over all pairs (𝑋,𝑌 ) of jointly distributed random variables
with values in (𝐸 × 𝐸, E × E) such that P𝑋 = 𝜇 and P𝑌 = 𝜈. We are now ready to make
clear the connection between K and𝑊1.
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Theorem 27 (Kantorovich–Rubinstein Theorem). Let (𝐸, 𝑑) be a separable metric
space. Then for all 𝜇, 𝜈 ∈ P1(𝐸, 𝑑),

𝑊1(𝜇, 𝜈) = K(𝜇, 𝜈).

If, in addition, 𝜇 and 𝜈 are inner regular (for example if (𝐸, 𝑑) is complete), then there is
a probability measure in Γ(𝜇, 𝜈) for which the infimum in the definition of𝑊1 is attained.

Proof. T.11.8.2. in Dudley RAP p.421 or T.4.13 in van Handel APC550 p.81 or T.5.10
in Villani OTON p.70. □

5.2 Transportation inequalities and tensorization

Theorem 28 (Induction Lemma). For 𝑖 = 1, . . . , 𝑛, let (𝐸𝑖 , 𝑑𝑖) be Polish a metric space,
𝜇𝑖 ∈ M1(𝐸𝑖 , 𝑑𝑖), and 𝑤𝑖 : 𝐸𝑖 × 𝐸𝑖 → R+ a B(𝐸𝑖 , 𝑑𝑖) × B(𝐸𝑖 , 𝑑𝑖) measurable function.
Let 𝜙 : R+ → R+ be a convex function. If for every 𝑖 = 1, . . . , 𝑛,

inf
𝛾∈Γ (𝜇𝑖 ,𝜈)

𝜙(E 𝛾 (𝑤𝑖 (𝑋,𝑌 ))) ≤ 2𝜎2𝐷 (𝜈∥𝜇𝑖)

for all 𝜈 ∈ M1(𝐸𝑖 , 𝑑𝑖), then

inf
𝛾∈Γ (𝜇1×···×𝜇𝑛 ,𝜈)

𝑛∑︁
𝑖=1

𝜙(E 𝛾 (𝑤𝑖 (𝑋𝑖 , 𝑌𝑖))) ≤ 2𝜎2𝐷 (𝜆∥𝜇1 × · · · × 𝜇𝑛)

for all probability measures 𝜆 on (𝐸1 × · · · × 𝐸𝑛,B(𝐸1, 𝑑1) × · · · × B(𝐸𝑛, 𝑑𝑛)).

Proof. L.8.13. in BLM CI p.256 or T.4.15. in van Handel APC550 p.85. □

Since 𝐸𝑖 are assumed separable, we have B(𝐸1, 𝑑1) × · · · ×B(𝐸𝑛, 𝑑𝑛) = B(𝐸1 × · · · ×
𝐸𝑛, 𝑑𝐸1×···×𝐸𝑛

) where 𝑑𝐸1×···×𝐸𝑛
is any metric inducing the product topology.

5.3 𝑇1 inequalities and Gaussian concentration

Theorem 29 (Bobkov–Götze Theorem). Let (𝐸, 𝑑) be a separable metric space and
𝜇 ∈ P1(𝐸, 𝑑). If a random variable 𝑋 has distribution 𝜇, then 𝑓 (𝑋) is sub-Gaussian
with proxy variance 𝜎2 for all 𝑓 ∈ Lip1(𝐸, 𝑑) if and only if

𝑊1(𝜈, 𝜇) ≤
√︃

2𝜎2𝐷 (𝜈∥𝜇)

for all 𝜈 ∈ P1(𝐸, 𝑑)

Proof. T.4.8. in van Handel APC550 p.76 or T.3.4.3. in Raginsky and Sason CMI p.119
or P.6.1. in Ledoux CMP p.119. □

The induction lemma allows us to generate a number of tensorization results for the
𝑊1 distance by taking 𝑤𝑖 = 𝑑𝑖 . The only thing that needs to be taken care of is that in
this case the left-hand side tensorized quantity is not a 𝑊1 distance. An extra step using
Cauchy–Schwarz needs to be performed. For this, given 𝑐 = (𝑐1, . . . , 𝑐𝑛) with 𝑐𝑖 > 0,
define 𝑑𝑐 (𝑥, 𝑦) =

∑𝑛
𝑖=1 𝑐𝑖𝑑𝑖 (𝑥𝑖 , 𝑦𝑖) which can be proved to be a metric on the space

𝐸1 × · · · × 𝐸𝑛 generating the product topology. To make clear which metric is used on 𝐸𝑖
or 𝐸1 × · · · × 𝐸𝑛 to define𝑊1, we may write𝑊1(𝜇, 𝜈; 𝑑).
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Corollary 30 (Tensorization of 𝑇1 under 𝑑𝑐). For 𝑖 = 1, . . . , 𝑛, let (𝐸𝑖 , 𝑑𝑖) be a Polish
metric space and 𝜇𝑖 ∈ M1(𝐸𝑖 , 𝑑𝑖). Let 𝑐 = (𝑐1, . . . , 𝑐𝑛) with 𝑐𝑖 > 0 and define
𝑑𝑐 (𝑥, 𝑦) =

∑𝑛
𝑖=1 𝑐𝑖𝑑𝑖 (𝑥𝑖 , 𝑦𝑖). If

∑𝑛
𝑖=1 𝑐

2
𝑖
= 1 and if for every 𝑖 = 1, . . . , 𝑛,

𝑊1(𝜇𝑖 , 𝜈; 𝑑𝑖) ≤
√︃

2𝜎2𝐷 (𝜈∥𝜇𝑖)

for all 𝜈 ∈ M1(𝐸𝑖 , 𝑑𝑖), then

𝑊1(𝜇1 × · · · × 𝜇𝑛, 𝜏; 𝑑𝑐) ≤
√︃

2𝜎2𝐷 (𝜏∥𝜇1 × · · · × 𝜇𝑛),

for all 𝜏 ∈ M1(𝐸1 × · · · × 𝐸𝑛, 𝑑𝑐).

Proof. Apply Cauchy–Schwarz to the result of the induction lemma for 𝜙(𝑥) = 𝑥2 and
𝑤𝑖 = 𝑑𝑖 . See C.4.16. in van Handel APC550 p.85. □

Remark. It is possible to extend the result by taking 𝑤𝑖 = 𝑑𝑖 but assuming that the spaces
𝐸𝑖 are Polish with respect to different metrics 𝜌𝑖 . In this case, one must be careful about:
the measurability of 𝑑𝑖; for which measures the hypothesis must be verified (namely,
M1(𝐸𝑖 , 𝜌𝑖), and not M1(𝐸𝑖 , 𝑑𝑖)); and for which measures the result hold (namely,
M1(𝐸1 × · · · × 𝐸𝑛, 𝜌) where 𝜌 is any metric generating the product topology induced by
the 𝜌𝑖). This extension allows, for example, to take the metric 𝑑𝑖 (𝑥𝑖 , 𝑦𝑖) = 1𝑥𝑖≠𝑦𝑖 even
when 𝐸𝑖 is neither finite nor countable (so that (𝐸𝑖 , 𝑑𝑖) is not separable), yielding another
proof of McDiarmid’s inequality. Indeed, 𝑑𝑖 is B(𝐸𝑖 , 𝜌𝑖) × B(𝐸𝑖 , 𝜌𝑖) measurable (since
(𝐸𝑖 , 𝜌𝑖) is separable). Moreover,𝑊1(𝜇𝑖 , 𝜈; 𝑑𝑖) = ∥𝜇𝑖 − 𝜈𝑖 ∥𝑇𝑉 for all 𝜈 ∈ M1(𝐸𝑖 , 𝜌𝑖), so
that Pinsker’s inequality yields 𝑊1(𝜇𝑖 , 𝜈; 𝑑𝑖) ≤

√︁
2𝜎2𝐷 (𝜈∥𝜇𝑖) for all 𝜈 ∈ M1(𝐸𝑖 , 𝜌𝑖).

By applying the extension of last corollary and the Bobkov–Gotze theorem, we get back
McDiarmid’s inequality.

5.4 Talagrand’s concentration inequality from conditional transportation

So far, no new concentration inequalities have been obtained with the transportation
method. We now show that the procedure above can be extended to hold under a one-sided
Lipschitz condition (mirroring the transition but not equivalent to the one-sided derivative
condition in the entropy method) which will generate new concentration results. The result
we derive is known as Talagrand’s concentration inequality (which he initially derived
"in an isoperimetric form in terms of a ‘convex distance’ to a set" (van Handel) and was
latter re-derived using the transportation method by Marton).

Proposition 31 (Marton’s 𝒅2 (Asymmetric) Distance). Let (𝐸𝑖 , 𝜌𝑖) be a Polish metric
space for 𝑖 = 1, . . . , 𝑛. Let 𝜌 be any metric generating the product topology induced by
the 𝜌𝑖 (and 𝜌 = 𝜌1 if 𝑛 = 1). Let 𝑐𝑖 : 𝐸1 × · · · × 𝐸𝑛 → R+ be any B(𝐸1 × · · · × 𝐸𝑛, 𝜌)-
measurable function for 𝑖 = 1, . . . , 𝑛. Define the function 𝑑2 : M1(𝐸1 × · · · × 𝐸𝑛, 𝜌) ×
M1(𝐸1 × · · · × 𝐸𝑛, 𝜌) → R+ by

𝑑2(𝜇, 𝜈) = inf
𝛾∈Γ (𝜇,𝜈)

sup
E 𝛾 (

∑𝑛
𝑖=1 𝑐𝑖 (𝑋)2 )≤1

E 𝛾

( 𝑛∑︁
𝑖=1

𝑐𝑖 (𝑋)1𝑋𝑖≠𝑌𝑖

)
.
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Then

𝑑2(𝜇, 𝜈) =
(

inf
𝛾∈Γ (𝜇,𝜈)

𝑛∑︁
𝑖=1

E 𝛾

(
(𝛾(𝑋𝑖 ≠ 𝑌𝑖 |𝑋))2

))1/2

.

If 𝑛 = 1, then

𝑑2(𝜇, 𝜈) =
(∫
𝐸

( 𝑓 − 𝑔)2
+

𝑔
𝑑𝜏

)1/2
,

where 𝜏 is any dominating measure for 𝜇 and 𝜈 (for instance, (𝜇 + 𝜈)/2), 𝑓 = 𝑑𝜇/𝑑𝜏, and
𝑔 = 𝑑𝜈/𝑑𝜏.

Proof. L.4.26. in van Handel APC550 p.94 for the first equality. L.8.3. in BLM CI p.243
for the second equality. □

In the definition of 𝑑2, the Polish assumption ensures that ((𝑥1, . . . , 𝑥𝑛), (𝑦1, . . . , 𝑦𝑛)) ↦→∑𝑛
𝑖=1 𝑐𝑖 (𝑥1, . . . , 𝑥𝑛)1𝑥𝑖≠𝑦𝑖 is B(𝐸1 × · · · × 𝐸𝑛, 𝜌) × B(𝐸1 × · · · × 𝐸𝑛, 𝜌)-measurable. If

𝑛 = 1, the function 𝑑2 can be more broadly defined for any measurable space (𝐸, E) such
that 𝑐1 is E-measurable and the diagonal of the product space 𝐸 × 𝐸 is measurable with
respect to the product 𝜎-algebra E × E (which holds for instance if 𝐸 is separable).

Proposition 32. Let (𝐸, 𝜌) be a separable metric space. Then for all 𝜇, 𝜈 ∈ M1(𝐸, 𝜌),

𝑑2
2 (𝜈, 𝜇) + 𝑑

2
2 (𝜇, 𝜈) ≤ 2𝐷 (𝜈∥𝜇).

Proof. L.8.4. in BLM CI p.244. □

It is possible to slightly extend the induction lemma of last section to hold in this case.
Combined with last result, the extension gives the following transportation inequalities.

Theorem 33 (Marton’s Conditional Transportation Inequality). For 𝑖 = 1, . . . , 𝑛, let
(𝐸𝑖 , 𝜌𝑖) be a Polish metric space and 𝜇𝑖 ∈ M1(𝐸𝑖 , 𝜌𝑖). Then

𝑑2
2 (𝜈, 𝜇1 × · · · × 𝜇𝑛) + 𝑑2

2 (𝜇1 × · · · × 𝜇𝑛, 𝜈) ≤ 2𝐷 (𝜈∥𝜇1 × · · · × 𝜇𝑛)

for all 𝜈 ∈ M1(𝐸1 × · · · × 𝐸𝑛, 𝜌) where 𝜌 is any metric generating the product topology
induced by the 𝜌𝑖 .

Proof. P.4.27. in van Handel APC550 p.65 or L.8.13. in BLM CI p.256 for the extension
of the induction lemma. The result then follows immediately from the 1-dimensional
transportation inequality above. See T.4.24. in van Handel APC550 p.93 or T.8.5. in
BLM CI p.245. □

Theorem 34 (Talagrand’s Concentration Inequality). For 𝑖 = 1, . . . , 𝑛, let (𝐸𝑖 , 𝜌𝑖) be
a Polish metric space and 𝑋𝑖 a random variable in 𝐸𝑖 . Let 𝜌 be any metric generating the
product topology induced by the 𝜌𝑖 . Let 𝑓 : 𝐸1 × · · · × 𝐸𝑛 → R be a B(𝐸1 × · · · × 𝐸𝑛, 𝜌)-
measurable function. Denote 𝑋 = (𝑋1, . . . , 𝑋𝑛). If 𝑋1, . . . , 𝑋𝑛 are independent and there
exist for 𝑖 = 1, . . . , 𝑛 B(𝐸1 × · · · × 𝐸𝑛, 𝜌)-measurable functions 𝑐𝑖 : 𝐸1 × · · · × 𝐸𝑛 → R+
such that for all 𝑥, 𝑦 ∈ 𝐸1 × · · · × 𝐸𝑛

𝑓 (𝑥) − 𝑓 (𝑦) ≤
𝑛∑︁
𝑖=1

𝑐𝑖 (𝑥)1𝑥𝑖≠𝑦𝑖 ,
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then for all 𝜆 ≥ 0,

lnE
(
𝑒𝜆( 𝑓 (𝑋)−E 𝑓 (𝑋) )

)
≤ 1

2
𝜆2





 𝑛∑︁
𝑖=1

𝑐2
𝑖






∞

and

lnE
(
𝑒𝜆(− 𝑓 (𝑋)+E 𝑓 (𝑋) )

)
≤ 1

2
𝜆2E

( 𝑛∑︁
𝑖=1

𝑐𝑖 (𝑋)2
)
.

Proof. T.4.20. in van Handel APC550 p.91 or T.8.6. in BLM CI p.245. □

In particular, we get, under the hypothesis of last theorem, for all 𝑡 ≥ 0,

P( 𝑓 (𝑋) − E 𝑓 (𝑋) ≥ 𝑡) ≤ 𝑒−𝑡2/2∥
∑𝑛

𝑖=1 𝑐
2
𝑖
∥∞

and
P( 𝑓 (𝑋) − E 𝑓 (𝑋) ≤ −𝑡) ≤ 𝑒−𝑡2/2E (

∑𝑛
𝑖=1 𝑐𝑖 (𝑋)2 ) .

Since ∥
∑𝑛
𝑖=1 𝑐

2
𝑖
∥∞ ≥ E (

∑𝑛
𝑖=1 𝑐𝑖 (𝑋)2), the lower bound is sharper than the upper bound

(and conversely when the one-sided Lipschitz property is reversed). Sometimes, the better
bound is not included in the statement of the theorem, which can then be reformulated
as: if 𝑋1, . . . , 𝑋𝑛 are independent and 𝑓 satisfies the one-sided Lipschitz property for 𝑐𝑖 ,
then 𝑓 (𝑋1, . . . , 𝑋𝑛) is sub-Gaussian with variance proxy ∥

∑𝑛
𝑖=1 𝑐

2
𝑖
∥∞.

Corollary 35. If 𝑋1, . . . , 𝑋𝑛 are independent with values in [0, 1], then 𝑓 (𝑋1, . . . , 𝑋𝑛) is
sub-Gaussian with variance proxy ∥∥∇ 𝑓 ∥2∥ for every convex function 𝑓 .

Proof. C.4.23. in van Handel APC550 p.92. □

5.5 𝑇2 inequalities and dimension-free Gaussian concentration

Corollary 36 (Tensorization of 𝑇2 under the 2-norm product metric). For 𝑖 = 1, . . . , 𝑛,
let (𝐸𝑖 , 𝑑𝑖) be a Polish metric space and 𝜇𝑖 ∈ M1(𝐸𝑖 , 𝑑𝑖). Define 𝑑 (𝑥, 𝑦) =

(
∑𝑛
𝑖=1 𝑑𝑖 (𝑥𝑖 , 𝑦𝑖)2)1/2. If

∑𝑛
𝑖=1 𝑐

2
𝑖
= 1 and if for every 𝑖 = 1, . . . , 𝑛,

𝑊2(𝜇𝑖 , 𝜈; 𝑑𝑖) ≤
√︃

2𝜎2𝐷 (𝜈∥𝜇𝑖)

for all 𝜈 ∈ M1(𝐸𝑖 , 𝑑𝑖), then

𝑊2(𝜇1 × · · · × 𝜇𝑛, 𝜏; 𝑑) ≤
√︃

2𝜎2𝐷 (𝜏∥𝜇1 × · · · × 𝜇𝑛),

for all 𝜏 ∈ M1(𝐸1 × · · · × 𝐸𝑛, 𝑑𝐸).

Proof. Apply 𝑥 ↦→ 𝑥2 to the result of the induction lemma for 𝜙(𝑥) = 𝑥 and 𝑤𝑖 = 𝑑2
𝑖
. See

C.4.30. in van Handel APC550 p.101. □

Naturally, the result does not extend to other 𝑝 (because 𝑇𝑝 inequalities are expressed
in terms of the squared root of the relative entropy, not its 𝑝-th root). This is sometimes
summed up by saying that 𝑇𝑝 exactly tensorizes under the 𝑝-norm product metric only for
𝑝 = 2. (Recall that the exact tensorization of 𝑇1 we previously got was under a particular
weighted 1-norm product metric, and not the 1-norm product metric.) It is possible to
prove a related result: for (𝐸, 𝑑) Polish and 𝑝 ∈ [1, 2], if 𝜇 ∈ P𝑝 (𝐸, 𝑑) satisfies 𝑇𝑝 (𝑐)

16



on (𝐸, 𝑑), then the product measure 𝜇
>
𝑛 satisfies 𝑇𝑝 (𝑐𝑛1−2/𝑝) on (𝐸𝑛, 𝑑𝑝,𝑛) where 𝑑𝑝,𝑛

is the 𝑝-norm product metric (see P.22.5. in Villani OTON p.586 or P.3.4.3. in Raginsky
and Sason CMI p.115).

Theorem 37 (Gozlan’s Theorem). Let (𝐸, 𝑑) be a Polish metric space and 𝜇 ∈
M1(𝐸, 𝑑). Let (𝑋𝑛)𝑛∈N be i.i.d. with distribution 𝜇. Define 𝑑2,𝑛 (𝑥, 𝑦) =

(
∑𝑛
𝑖=1 𝑑 (𝑥𝑖 , 𝑦𝑖)2)1/2. Then the following propositions are equivalent:
(i) 𝜇 satisfies the 𝑇2(𝜎2) inequality on (𝐸, 𝑑), that is, for all 𝜈 ∈ M1(𝐸, 𝑑),

𝑊2(𝜇, 𝜈) ≤
√︃

2𝜎2𝐷 (𝜈∥𝜇);

(ii) 𝜇
>
𝑛 satisfies the 𝑇2(𝜎2) inequality on (𝐸𝑛, 𝑑2,𝑛) for every 𝑛 ≥ 1, that is, for qll

𝑛 ≥ 1 and all 𝜏 ∈ M1(𝐸𝑛, 𝑑2,𝑛),

𝑊1(𝜇
>
𝑛, 𝜏) ≤

√︃
2𝜎2𝐷 (𝜏∥𝜇

>
𝑛);

3. there is a constant 𝐶 such that

P( 𝑓 (𝑋1, . . . , 𝑋𝑛) − E ( 𝑓 (𝑋1, . . . , 𝑋𝑛)) ≥ 𝑡) ≤ 𝐶𝑒−𝑡
2/2𝜎2

for all 𝑛 ≥ 1, all 𝑡 ≥ 0, and all 1-Lipschitz function 𝑓 ∈ Lip1(𝐸𝑛, 𝑑2,𝑛).

Proof. T.4.31. in van Handel APC550 p.102. □
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