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1 Martingales and local martingales

Let (Ω,F , 𝑃) a probability space. A collection of 𝜎-algebras (F𝑡 )𝑡≥0 indexed by
[0,∞) is said to be a filtration if F𝑡 ⊆ F𝑡+𝑠 for any 𝑡, 𝑠 ∈ [0,∞). A filtration is said to
be right-continuous if for every 𝑡 ≥ 0, F𝑡 = F𝑡+ :=

⋂
𝜀>0 F𝑡+𝜀 . A filtration is complete

if (Ω,F , 𝑃) is complete and {𝐴 ∈ F : 𝑃(𝐴) = 0} ⊆ F0. A right-continuous and
complete filtration is said to be standard (or to satisfy the usual conditions). A random
variable 𝑇 with values in [0,∞] is said to be a stopping with respect to a filtration (F𝑡 ) if
{𝑇 ≤ 𝑡} ∈ F𝑡 for every 𝑡 ≥ 0. A process 𝑋 = (𝑋𝑡 )𝑡≥0 is said to be adapted to a filtration
(F𝑡 )𝑡≥0 if for every 𝑡 ≥ 0, 𝑋𝑡 is F𝑡 -measurable. All processes we now consider take
values in R or R𝑑 .

Definition 1 (Martingale). A process 𝑋 is said to be a martingale with respect to a
filtration (F𝑡 ) if:

(i) 𝑋 is adapted to (F𝑡 );
(ii) 𝑋 is integrable, i.e., E [|𝑋𝑡 |] < ∞ for all 𝑡 ≥ 0;
(iii) E [𝑋𝑡+𝑠 |F𝑡 ] = 𝑋𝑡 for all 𝑡, 𝑠 ≥ 0.

It can be shown that all martingales with respect to standard filtrations have a version
with cadlag sample path (see Lalley’s notes). In what follows, we always consider
martingales with cadlag sample path.

If 𝑋 is a martingale, the optional stopping theorem states that if 𝑇 is a bounded
stopping time, then the stopped process 𝑋𝑇 := (𝑋𝑡∧𝑇 )𝑡≥0 is also a martingale. "Stopping
can be used [...] to truncate the path of a process in order to gain more integrability
or tightness while keeping adaption and continuity" (D. Chafai). This prompts us to
introduce a category of processes that generalize martingales.

Definition 2 (Local Martingale). A cadlag process adapted to a standard filtration is
said to be a local martingale if there exists a sequence of stopping time (𝑇𝑛)𝑛∈N with
𝑇1 ≤ 𝑇2 ≤ . . . and 𝑇𝑛 → ∞ a.s. such that 𝑋𝑇𝑛 is a martingale for every 𝑛 ∈ N.

Every martingale is a local martingale, but the converse is false. A martingale can be
understood as the fortune of a player in a fair game. A strictly local martingale can be
understood as the fortune of a player in a game that is only locally fair – it is akin to a
financial bubble. Strict local martingales do not exist in discrete-time.
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2 Stochastic integration

[REFs. Le Gall BMMSC (2013), Etheridge’s lecture notes CMSC (2018), Beresty-
cki’s lecture notes SCA (2010)]

In this section we establish the notion of stochastic integrals (in the sense of Itô) for
continuous martingales (i.e., martingales with continuous sample path). We would like
to define an integral of the form∫ 𝑡

0
𝑓 (𝑠) 𝑑𝑀𝑠 :=

∫ 𝑡

0
𝑓 (𝜔, 𝑠) 𝑑𝑀𝑠 (𝜔)

as a Stieltjes integral, but the variations of the sample path of 𝑀𝑠 are too wild for that.
For instance, the sample path of a Brownian motion is a.s. nowhere differentiable, and so
exhibits a.s. infinite total variation. The trick to rigorously define stochastic integrals is to
leverage the fact that continuous martingales have finite quadratic variations: stochastic
integrals can be defined as limits in some appropriately defined 𝐿2 space of (well-defined)
integrals of some simple processes that takes only finitely many (bounded) values.

Denote M2 the set of all cadlag martingales bounded in 𝐿2 and M2
𝑐 the set of all

continuous martingales bounded in 𝐿2.

Proposition 3. Let 𝑋 ∈ M2. There exists 𝑋∞ ∈ 𝐿2 such that

𝑋𝑡 → 𝑋∞ in 𝐿2 and a.s., as 𝑡 → ∞.

Moreover, 𝑋𝑡 = E [𝑋∞ |F𝑡 ] a.s. for all 𝑡 ≥ 0.

The setM2
𝑐 is a normed linear space which we endow with the norm ∥𝑀 ∥2 := E [𝑀2

∞].

Definition 4 (Simple Process). A simple process is any map 𝐻 : Ω × (0,∞) → R of the
form

𝐻 (𝜔, 𝑡) :=
𝑚∑︁
𝑖=0

𝑍𝑖 (𝜔)1{ (𝑡𝑖 ,𝑡𝑖+1 ] } (𝑡)

where 𝑛 ∈ N, 0 = 𝑡0 < · · · < 𝑡𝑚+1 < ∞, and 𝑍𝑖 is a bounded F𝑡𝑖 -measurable random
variable for all 𝑖. The stochastic integral for 𝐻 with respect to 𝑀 ∈ M2 is defined as∫ 𝑡

0
𝐻𝑠 𝑑𝑀𝑠 :=

𝑚∑︁
𝑖=0

𝑍𝑖 (𝑀𝑡𝑖+1∧𝑡 − 𝑀𝑡𝑖∧𝑡 ).

We denote the set of simple processes by E .

Theorem 5 (Quadratic Variation). Let 𝑀 be a continuous local martingale. There exists
a unique (up to indistinguishability) adapted continuous non-decreasing process denoted
by [𝑀] := ( [𝑀]𝑡 )𝑡≥0 such that [𝑀]0 = 0 a.s. and the process given by 𝑀2

𝑡 − [𝑀]𝑡 is a
continuous local martingale. The process [𝑀] is said to be the quadratic variation of 𝑀 .

Proposition 6. Let 𝑀 be a continuous local martingale. For any 𝑇 > 0 and any sequence
of partitions 𝜋𝑛 = {0 = 𝑡𝑛0 ≤ · · · ≤ 𝑡𝑛

𝑛(𝜋𝑛 ) = 𝑇}with 𝛿(𝜋𝑛) := sup1≤𝑖≤𝑛(𝜋𝑛 ) (𝑡
𝑛
𝑖
−𝑡𝑛
𝑖−1) → 0

as 𝑛→ ∞,

[𝑀]𝑇 = lim
𝑛→∞

𝑛(𝜋𝑛 )∑︁
𝑖=1

(
𝑀𝑡𝑛

𝑖
− 𝑀𝑡𝑛

𝑖−1

)2

in probability.
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If 𝐵 is a standard Brownian motion, it is a continuous local martingale, and [𝐵]𝑡 = 𝑡.
The stochastic integral of a simple process with respect to a continuous martingale

bounded in 𝐿2 is also a continuous martingale (bounded in 𝐿2), and in particular a
continuous local martingale. It can be shown that[∫ 𝑡

0
𝐻𝑠 𝑑𝑀𝑠

]
𝑡

=

𝑚∑︁
𝑖=1

𝑍2
𝑖

(
[𝑀]𝑡𝑖+1∧𝑡 − [𝑀]𝑡𝑖∧𝑡

)
=

∫ 𝑡

0
𝐻2
𝑠 𝑑 [𝑀]𝑠 .

The idea is then to use E (
∫ ∞
0 𝐻2

𝑠 𝑑 [𝑀]𝑠) as a guide to define the 𝐿2 space we are
after. It will then turn out that the map 𝐻 ↦→ (

∫ 𝑡
0 𝐻𝑠 𝑑𝑀𝑠)𝑡≥0 is a linear isometry. If

simple processes are dense in the considered 𝐿2 space, then we will be able to define
stochastic integrals for all processes in this 𝐿2 space via a limiting procedure.

Definition 7 (𝐿2(𝑀) Space). Given𝑀 ∈ M2
𝑐, we denote by 𝐿2(𝑀) the space of previsible

processes 𝐾 such that

∥𝐾 ∥2
𝐿2 (𝑀 ) := E

(∫ ∞

0
𝐾2
𝑠 𝑑 [𝑀]𝑠

)
< ∞.

The space 𝐿2(𝑀) is standard 𝐿2 space (and hence an Hilbert space) for the measure
𝜇 given by

𝜇(𝐴 × (𝑠, 𝑡]) := E (1{𝐴} ( [𝑀]𝑡 − [𝑀]𝑠))

for all 𝑠 < 𝑡, 𝐴 ∈ F𝑠. We have that E ⊆ 𝐿2(𝑀) for any 𝑀 ∈ M2
𝑐.

Proposition 8. Let 𝑀 ∈ M2
𝑐. Then E is dense in 𝐿2(𝑀).

Theorem 9 (Itô’s Isometry). Let 𝑀 ∈ M2
𝑐. The map 𝐻 ↦→ (

∫ 𝑡
0 𝐻𝑠 𝑑𝑀𝑠)𝑡≥0 from E to

M2
𝑐 has a unique extension to a linear isometry from 𝐿2(𝑀) to M2

𝑐 which we denote

𝐾 ↦→
(∫ 𝑡

0
𝐾𝑠 𝑑𝑀𝑠

)
𝑡≥0

.

The isometry property rewrites as



(∫ 𝑡

0
𝐾𝑠 𝑑𝑀𝑠

)
𝑡≥0





2

= E

((∫ ∞

0
𝐾𝑠 𝑑𝑀𝑠

)2
)
= E

(∫ ∞

0
𝐾2
𝑠 𝑑 [𝑀]𝑠

)
= ∥𝐾 ∥2

𝐿2 (𝑀 ) .

Stopping at suitable stopping times, the Itô integral can then be extended from M2
𝑐

to continuous local martingales. The integrators can then be extended to locally bounded
previsible processes (which include continuous adapted process). A previsible process 𝐾
is locally bounded if there exists increasing stopping times 𝑆𝑛 with 𝑆𝑛 → ∞ a.s. such
that 𝐾1(0,𝑆𝑛 ] is bounded for all 𝑛 ∈ N.

Proposition 10. Let 𝐾 a locally bounded previsible process for stopping times 𝑆𝑛 and 𝑀
a continuous local martingale. Consider the stopping times 𝑆′𝑛 := inf{𝑡 ≥ 0 : |𝑀𝑡 | ≥ 𝑛}
and set 𝑇𝑛 := 𝑆𝑛 ∧ 𝑆′𝑛. Then for all 𝑡 ≥ 𝑇𝑛,∫ 𝑡

0
𝐾𝑠1(0,𝑆𝑛 ] (𝑠) 𝑑 [𝑀𝑇

𝑛 ]𝑠

is well-defined and is denoted
∫ 𝑡
0 𝐾𝑠 𝑑𝑀𝑠.
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3 Stochastic differential equations

[Le Gall, Oksendal, Klenke, Etheridge’s lecture notes, Revuz&Yor and Ethier&Kurz
(for definition of Markov processes)]

A stochastic differential equation is simply a standard differential equation augmented
by a noise term, which is typically of the form 𝜎𝐵𝑡 where 𝐵𝑡 is a Brownian motion and
𝜎 is a constant corresponding to the intensity of the noise. "[T]he use of Brownian
motion [...] is justified due to its property of independent increments[:] the random
perturbations affecting disjoint time intervals are assumed to be independent". In other
words, a standard ODE

𝑦𝑡 = 𝑦0 +
∫ 𝑡

0
𝑏(𝑦𝑠) 𝑑𝑠

is augmented to

𝑌𝑡 = 𝑌0 +
∫ 𝑡

0
𝑏(𝑌𝑠) 𝑑𝑠 + 𝜎𝐵𝑡 .

By allowing the intensity to depend on the state of the system at time 𝑡, we obtain an
equation of the form

𝑌𝑡 = 𝑌0 +
∫ 𝑡

0
𝑏(𝑌𝑠) 𝑑𝑠 +

∫ 𝑡

0
𝜎(𝑌𝑠) 𝑑𝐵𝑠

where the rightest integral is a stochastic integral as previously defined. The equation can
be further extended to the inhomogeneous case by allowing 𝑏 and 𝜎 to depend on 𝑡, that
is,

𝑌𝑡 = 𝑌0 +
∫ 𝑡

0
𝑏(𝑠,𝑌𝑠) 𝑑𝑠 +

∫ 𝑡

0
𝜎(𝑠,𝑌𝑠) 𝑑𝐵𝑠,

which rewrites in differential form as

𝑑𝑌𝑡 = 𝑏(𝑡, 𝑌𝑡 ) 𝑑𝑡 + 𝜎(𝑡, 𝑌𝑡 ) 𝑑𝐵𝑡 .

It is standard to call 𝑏 the drift coefficient and 𝜎 the diffusion coefficient.

Definition 11 (Solution SDEs). Let 𝑑 and 𝑚 be positive integers. Let 𝑏 and 𝜎 be locally
bounded measurable functions fromR+×R𝑑 toR𝑑×𝑚 andR𝑑 . A solution of the stochastic
differential equation 𝐸 (𝜎, 𝑏)

𝑑𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡 ) 𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡 ) 𝑑𝐵𝑡

consists of:
(i) a filtered probability space (Ω,F , (F𝑡 )𝑡≥0, 𝑃) where the filtration is assumed

complete;
(ii) an (F𝑡 )𝑡≥0-Brownian motion 𝐵 = (𝐵1, . . . , 𝐵𝑚) taking values in R𝑚;
(iii) an (F𝑡 )𝑡≥0-adapted process 𝑋 = (𝑋1, . . . , 𝑋𝑑) with values in R𝑑 and continuous

sample paths such that

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏(𝑠, 𝑋𝑠) 𝑑𝑠 +

∫ 𝑡

0
𝜎(𝑠, 𝑋𝑠) 𝑑𝐵𝑠,
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meaning that for every 𝑖 = 1, . . . , 𝑑,

𝑋 𝑖𝑡 = 𝑋
𝑖
0 +

∫ 𝑡

0
𝑏𝑖 (𝑠, 𝑋𝑠) 𝑑𝑠 +

𝑚∑︁
𝑗=1

∫ 𝑡

0
𝜎𝑖 𝑗 (𝑠, 𝑋𝑠) 𝑑𝐵 𝑗𝑠 .

When, in addition, 𝑋0 = 𝑥 ∈ R𝑑 , 𝑋 is said to be a solution started from 𝑥.

As implicit in the definition, when we speak of a solution of 𝐸 (𝜎, 𝑏), the filtered
probability space and the Brownian motion 𝐵 need not be fixed a priori but can be
constructed at the same time as the process 𝑋 . This possibility leads to two notions
of solution: weak and strong. "Intuitively, a strong solution corresponds to solving the
SDE for a given Brownian motion, while in producing a weak solution we are allowed to
construct the Brownian motion and the solution at the same time" (Durrett). Moreover,
as made explicit in next definition, there are at least two reasonable notions of uniqueness
for solutions of SDEs.

Definition 12. Let 𝐸 (𝜎, 𝑏) the SDE in the previous definition. We say that:
(i) 𝐸 (𝜎, 𝑏) has a solution if for each 𝑥 ∈ R𝑑 , there exists a solution of 𝐸 (𝜎, 𝑏) started

from 𝑥;
(ii) there is uniqueness in law if all solutions of 𝐸 (𝜎, 𝑏) started from 𝑥 has same

distribution;
(iii) there is pathwise uniqueness if, when (Ω,F , (F𝑡 )𝑡≥0, 𝑃) and 𝐵 are fixed, any two

solutions 𝑋 and 𝑋 ′ satisfying 𝑋0 = 𝑋 ′
0 a.s. are indistinguishable;

(iv) a solution 𝑋 for 𝐸 (𝜎, 𝑏) started from 𝑥 is a strong solution if 𝑋 is adapted to the
natural filtration of 𝐵.

4 Markov processes and diffusion processes

Definition 13 (Transition Family). Let (𝐸, E) be a measurable space. A family of
probability kernels (𝜅𝑠,𝑡 )0≤𝑠<𝑡 on (𝐸, E) is said to be a transition function (t.f.) if for all
𝑠 < 𝑡 < 𝑣, ∫

𝜅𝑠,𝑡 (𝑥, 𝑑𝑦)𝜅𝑡 ,𝑣 (𝑦, 𝐴) = 𝜅𝑠,𝑣 (𝑥, 𝐴)

for all 𝑥 ∈ 𝐸 and all 𝐴 ∈ E . This is known as the Chapman–Kolmogorov equation. The
t.f. is said to be homogeneous if 𝜅𝑠,𝑡 depends on 𝑠 and 𝑡 only through 𝑡 − 𝑠. In that case,
we write 𝜅𝑡 for 𝜅0,𝑡 and the Chapman–Kolmogorov equation rewrites as

𝜅𝑠+𝑡 (𝑥, 𝐴) =
∫

𝜅𝑠 (𝑥, 𝑑𝑦)𝜅𝑡 (𝑦, 𝐴)

for all 𝑠, 𝑡 ≥ 0; in other words, the family (𝜅𝑡 )𝑡≥0 forms a semigroup which is called
transition semigroup.

Definition 14 (Continuous-Time Markov Process). Let (Ω,F , (F𝑡 )𝑡≥0, 𝑃) be a filtered
probability space. An adapted process 𝑋 is said to be a Markov process with respect to
(F𝑡 )𝑡≥0 with transition function 𝜅𝑠,𝑡 if for any positive Borel function 𝑓 and any 𝑠 < 𝑡,

E ( 𝑓 (𝑋𝑡 ) |F𝑠) =
∫
𝐸

𝑓 (𝑦)𝜅𝑠,𝑡 (𝑋𝑠, 𝑑𝑦), 𝑃 a.s..
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The probability measure 𝑋0(𝑄) is called the initial distribution of 𝑋 . The process is said
to be homogeneous if the t.f. is homogeneous, in which case the above equation reads as

E ( 𝑓 (𝑋𝑠+𝑡 ) |F𝑠) =
∫
𝐸

𝑓 (𝑦)𝜅𝑡 (𝑋𝑠, 𝑑𝑦), 𝑃 a.s..

Definition 15 (Strong Markov Property). Let 𝑋 be a cadlag (time-homogeneous) Markov
process, (F𝑡 )𝑡≥0 the usual enlargement of the natural filtration, and 𝜏 an F𝑡 -stopping
time. Then 𝑋 is said to be strong Markov at 𝜏 if for every positive Borel function 𝑓 ,

E ( 𝑓 (𝑋𝑡+𝜏) |F𝜏) =
∫
𝐸

𝑓 (𝑦)𝜅𝑡 (𝑋𝜏 , 𝑑𝑦), 𝑃 a.s. on 𝜏 < ∞,

for all 𝑡 ≥ 0. The process is said to be strong Markov if it is strong Markov for all stopping
times of (F𝑡 )𝑡≥0.

Strong Markov (time-homogeneous) processes in R𝑑 with continuous sample paths
are called diffusion processes (but the definition is not standardized in the literature
– see Protter). As shown in next section, these processes arise naturally as solutions
of (time-homogeneous) SDEs (under regularity conditions on the coefficients). Since
(under these conditions) solutions of SDEs can be characterized by some martingale
properties involving infinitesimal generators, this justifies some authors to define diffusion
processes directly in terms of these properties. On the other hand, some other authors
define diffusion processes as solutions of SDEs (without necessarily the strong Markov
property). These distinctions are often immaterial since, at least in the homogeneous
case, standard (sufficient) conditions for existence of solutions of SDEs are sufficient for
the martingale characterization and the strong Markov property.

Definition 16 (Diffusion Process). A process with values in R𝑑 is said to be a diffusion
process if:

(i) it has continuous sample path;
(ii) it is a time-homogeneous strong Markov process.

Proposition 17. Suppose that the functions 𝜎 and 𝑏 are continuous on R+ × R𝑑 and
Lipschitz in the variable 𝑥, i.e., there is a constant 𝐾 such that for every 𝑡 ≥ 0, 𝑥, 𝑦 ∈ R𝑑 ,

∥𝜎(𝑡, 𝑥) − 𝜎(𝑡, 𝑦)∥ ≤ 𝐾 ∥𝑥 − 𝑦∥,
∥𝑏(𝑡, 𝑥) − 𝑏(𝑡, 𝑦)∥ ≤ 𝐾 ∥𝑥 − 𝑦∥.

Then 𝐸 (𝜎, 𝑏) admits pathwise unique strong solutions.
If, in addition, the coefficients 𝜎 and 𝑏 are homogeneous, i.e., 𝜎(𝑡, 𝑥) = 𝜎(𝑥)

and 𝑏(𝑡, 𝑥) = 𝑏(𝑥), then the solutions of 𝐸 (𝜎, 𝑏) are Markov processes with transition
semigroup given by

𝜅𝑡 𝑓 (𝑥) = E ( 𝑓 (𝑋 𝑥𝑡 ))

where 𝑋 𝑥 is an arbitrary solution of 𝐸 (𝜎, 𝑏) started from 𝑥. The semigroup is Feller and
its generator is such that 𝐶2

𝐾
(R𝑑) ⊆ 𝐷 (𝐿) and, for every 𝑓 ∈ 𝐶2

𝐾
(R𝑑),

𝐿 𝑓 (𝑥) = 1
2

𝑑∑︁
𝑖, 𝑗=1

(𝜎𝜎𝑇 )𝑖 𝑗 (𝑥)
𝜕2 𝑓

𝜕𝑥𝑖𝑥 𝑗
(𝑥) +

𝑑∑︁
𝑖=1

𝑏𝑖 (𝑥)
𝜕 𝑓

𝜕𝑥𝑖
(𝑥).
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Moreover, the solutions of 𝐸 (𝜎, 𝑏) satisfy the strong Markov property.

5 Martingale problem and weak solutions of SDEs

[REFs. Stroock&Varadhan (1979), Berestycki’s lecture notes, Etheridge’s lecture
notes, Durrett (1996), Ethier&Kurtz (1986), Karatzas&Shreve, Rogers&Williams, Re-
vuz&Yor]

In 1948 Lévy proved that the standard Brownian motion could be characterized
as the only continuous process 𝐵 such that 𝐵(𝑡) and 𝐵2(𝑡) − 𝑡 are both martingales.
This connection was further explored by Varadhan and Stroock: they leveraged the
existence of a larger correspondence between weak solutions of SDEs and processes
satisfying some martingale properties to derive important results for solutions of SDEs.
Indeed, the martingale characterization proves more suitable for continuity and weak
convergence arguments: a number of important existence and approximation results can
be derived from the martingale side. (See, e.g., S.5.4. in Karatzas&Shreve or R.19.8. in
Rogers&Williams.)

Definition 18 (Martingale Problem). Let (𝜎𝑖, 𝑗 (𝑥))1≤𝑖, 𝑗≤𝑑 and (𝑏𝑖 (𝑥))1≤𝑖≤𝑑 be families
of real-valued measurable functions. Define 𝑎(𝑥) := 𝜎(𝑥)𝜎(𝑥)𝑇 . A continuous process
𝑋 with values in R𝑑 , together with a standard filtered probability space, is said to solve
the martingale problem 𝑀 (𝑎, 𝑏) if for all 1 ≤ 𝑖, 𝑗 ≤ 𝑑,

𝑌 𝑖 :=
(
𝑋 𝑖𝑡 −

∫ 𝑡

0
𝑏𝑖 (𝑋𝑠) 𝑑𝑠

)
𝑡≥0

and (
𝑌 𝑖𝑡𝑌

𝑗
𝑡 −

∫ 𝑡

0
𝑎𝑖 𝑗 (𝑋𝑠) 𝑑𝑠

)
𝑡≥0

are local martingales.

When 𝑑 = 1, the processes are 𝑌𝑡 := 𝑋𝑡 −
∫ 𝑡
0 𝑏(𝑋𝑠) 𝑑𝑠 and 𝑌2

𝑡 −
∫
𝜎2(𝑋𝑠) 𝑑𝑠.

Suppose that the SDE given by

𝑑𝑋𝑡 = 𝑏(𝑋𝑡 ) 𝑑𝑡 + 𝜎(𝑋𝑡 ) 𝑑𝐵𝑡 ,

admits a solution 𝑋 . Then, since the stochastic integral is a local martingale, the process
given by𝑌𝑡 := 𝑋𝑡 − 𝑋0 +

∫ 𝑡
0 𝑏(𝑋𝑠) 𝑑𝑠 is a mean zero local martingale. Squaring and using

the Itô isometry for stochastic integrals, we have that𝑌2
𝑡 −

∫
𝜎2(𝑋𝑠) 𝑑𝑠 is a local martingale.

That is, 𝑋 solves the martingale problem 𝑀 (𝑎, 𝑏). It turns out that the converse is
true: there is a one-to-one correspondence between (distributions of) weak solutions
to stochastic differential equations and solutions to martingale problems. In particular,
existence and uniqueness for solutions of SDEs imply well-posed martingale problems
and well-posed martingale problems imply existence and uniqueness for solutions of
SDEs.

Theorem 19. Let 𝑋 be a solution to 𝑀 (𝑎, 𝑏). Then there exists a Brownian motion 𝐵,
possibly defined on an enlarged probability space, such that (𝑋, 𝐵) solves

𝑑𝑋𝑡 = 𝑏(𝑋𝑡 ) 𝑑𝑡 + 𝜎(𝑋𝑡 ) 𝑑𝐵𝑡 .

7



Proof. T.5.4.5. in Durrett (1996) p.199 or T.6.1. Berestycki’s lecture notes SCA (2010)
p.87. □

Proposition 20. If 𝑎 and 𝑏 are locally bounded and 𝑀 (𝑎, 𝑏) is well-posed, then the
solution satisfies the strong Markov property.

Proof. T.5.4.5. in Durrett (1996) □

If the coefficients are Lipschitz, we know that there is a unique strong solution to the
corresponding SDE, which implies that the corresponding martingale problem is well-
posed. Weaker conditions for the existence of weak solutions can be derived from the
martingale side. In particular, Stroock and Varadhan derived the

Theorem 21. Suppose that 𝑎 and 𝑏 are measurable and that:
(i) 𝑎 is continuous;
(ii) 𝑎(𝑥) is strictly definite positive for each 𝑥 ∈ R𝑑;
(iii) there exists 𝐾 < ∞ such that for all 1 ≤ 𝑖, 𝑗 ≤ 𝑑 and all 𝑥 ∈ R𝑑 ,

|𝑎𝑖 𝑗 (𝑥) | ≤ 𝐾 (1 + ∥𝑥∥2) and |𝑏𝑖 (𝑥) | ≤ 𝐾 (1 + ∥𝑥∥).

Then 𝑀 (𝑎, 𝑏) is well-posed.

Proof. T.7.2.1. in Stroock&Varadhan, stated in the form of T.V.24.1 in Rogers&Williams.
□

Note that the martingale problem defined above is not the standard martingale problem
considered by Stroock–Varadhan (and most of the textbooks) but a simplified version (from
Durrett) that is enough for the correspondence argument to carry over. The non-reduced
martingale problem (which implies the reduced martingale problem – see lecture notes)
involves the infinitesimal generator. Define for all 𝑓 ∈ 𝐶2

𝐾
(R𝑑),

𝐿 𝑓 (𝑥) = 1
2

𝑑∑︁
𝑖, 𝑗=1

𝑎𝑖 𝑗 (𝑥)
𝜕2 𝑓

𝜕𝑥𝑖𝑥 𝑗
(𝑥) +

𝑑∑︁
𝑖=1

𝑏𝑖 (𝑥)
𝜕 𝑓

𝜕𝑥𝑖
(𝑥).

Under regularity conditions on the coefficients, the operator 𝐿 emerges as the infinitesimal
generator of solutions of (homogeneous) SDEs. That is, 𝐿 𝑓 (𝑥) represents the infinitesimal
expected change in 𝑓 (𝑋) given that 𝑋𝑡 = 𝑥 defined as

lim
𝜀→0
E

(
𝑓 (𝑋𝑡+𝜀) − 𝑓 (𝑋𝑡 )

𝜀

���� F𝑡 , 𝑋𝑡 = 𝑥) = 𝐿 𝑓 (𝑥).

Definition 22 ((SV) Martingale Problem). A continuous process with values in R𝑑 is said
to the solve the (SV) martingale problem if for all 𝑓 ∈ 𝐶∞

𝐾
(R𝑑),

𝑀
𝑓
𝑡 := 𝑓 (𝑋𝑡 ) − 𝑓 (𝑋0) −

∫ 𝑡

0
𝐿 𝑓 (𝑋𝑠) 𝑑𝑠

is a local martingale.

By considering functions 𝑓 (𝑥) = 𝑥𝑖 and 𝑓 (𝑥) = 𝑥𝑖𝑥 𝑗 , it can be shown that if 𝑋 is
solution to the (SV) martingale problem for 𝑎 = 𝜎𝜎𝑇 , then it is a solution to 𝑀 (𝑎, 𝑏).
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6 Diffusion approximation of Markov chains

Lemma 23. Let (𝑋𝑛)𝑛∈N be a sequence of random variables with values in𝐶 ( [0, 1],R𝑑).
Then (𝑋𝑛)𝑛∈N is tight if and only if for all 𝜀 > 0, there exists 𝑛0, 𝑀 ∈ N and 𝛿 > 0 such
that:

(i) 𝑃(∥𝑋𝑛 (0)∥ > 𝑀) ≤ 𝜀 for all 𝑛 ≥ 𝑛0;
(ii) 𝑃(osc𝛿 > 𝜀) ≤ 𝜀;

where
osc𝛿 (𝜔) := sup{∥𝜔(𝑠) − 𝜔(𝑡)∥ : |𝑠 − 𝑡 | ≤ 𝛿}.

Similar conditions based on an extension of the Arzelà–Ascoli theorem (using an
extended notion of 𝛿-modulus for functions which may have jumps) can be derived
for characterizing tightness in 𝐷 ( [0, 1],R𝑑). For our purpose, we note that the previous
characterization in𝐶 in terms of the standard notion of 𝛿-modulus of continuity provides a
sufficient condition for tightness in 𝐷. Moreover, if the conditions hold, the subsequential
limits are in 𝐶 a.s.. (See T.15.5. in CPM Billingsley (1968)).

Theorem 24 (Stroock–Varadhan Approximation Theorem). Let 𝑌 ℎ := (𝑌 ℎ𝑛 )𝑛∈N be a
rescaled (discrete) Markov chain taking values in a set 𝑆ℎ ⊆ R𝑑 with ℎ > 0 a scaling
parameter. The transition probabilities of 𝑌 ℎ are given by a Markov kernel Πℎ, that is,
Πℎ (𝑥, 𝐴) = 𝑃(𝑌 ℎ𝑛+1 ∈ 𝐴|𝑌 ℎ𝑛 = 𝑥). Define the process 𝑋ℎ on [0, 1] by

𝑋ℎ𝑡 := 𝑌 ℎ⌊𝑡/ℎ⌋

so that 𝑋ℎ is a.s. right-continuous and constant between two successive jumps of the
chain, which may happen every ℎ units of time for 𝑋ℎ. Define

𝐾ℎ (𝑥, 𝑑𝑦) :=
1
ℎ
Πℎ (𝑥, 𝑑𝑦).

For 1 ≤ 𝑖, 𝑗 ≤ 𝑑, define

𝑎ℎ𝑖 𝑗 :=
∫
|𝑦−𝑥 | ≤1

(𝑦𝑖 − 𝑥𝑖) (𝑦 𝑗 − 𝑥 𝑗)𝐾ℎ (𝑥, 𝑑𝑦)

𝑏ℎ𝑖 :=
∫
|𝑦−𝑥 | ≤1

(𝑦𝑖 − 𝑥𝑖)𝐾ℎ (𝑥, 𝑑𝑦)

Δℎ𝜀 := 𝐾ℎ (𝑥, 𝐵(𝑥, 𝜀)𝑐).

Suppose that:
(i) for every 1 ≤ 𝑖, 𝑗 ≤ 𝑑, every 𝑅 > 0, and every 𝜀 > 0,

lim
ℎ→0

sup
|𝑥 | ≤𝑅

|𝑎ℎ𝑖 𝑗 (𝑥) − 𝑎𝑖 𝑗 (𝑥) | = 0,

lim
ℎ→0

sup
|𝑥 | ≤𝑅

|𝑏ℎ𝑖 (𝑥) − 𝑏𝑖 (𝑥) | = 0,

lim
ℎ→0

sup
|𝑥 | ≤𝑅

Δℎ𝜀 (𝑥) = 0,

for some functions 𝑎𝑖 𝑗 and 𝑏𝑖;
(ii) the limit coefficients 𝑎𝑖 𝑗 and 𝑏𝑖 are continuous functions on R𝑑;
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(iii) for each 𝑥 ∈ R𝑑 , the martingale problem 𝑀 (𝑎, 𝑏) is well-posed, i.e., it has a
unique (in distribution) solution 𝑋 with initial value 𝑋0 = 𝑥 a.s..

If 𝑋ℎ0 = 𝑥ℎ → 𝑥0 as ℎ → 0 for some 𝑥0 ∈ R𝑑 , then 𝑋ℎ converges weakly to 𝑋 as
ℎ → 0 in the space 𝐷 ( [0, 1],R𝑑) of cadlag functions from [0, 1] to R𝑑 endowed with the
Skorokhod topology, where 𝑋 is the (unique) solution to the martingale problem 𝑀 (𝑎, 𝑏)
with initial value 𝑋0 = 𝑥0. In particular, the linear interpolations of 𝑌 ℎ converge weakly
in the space 𝐶 ( [0, 1],R𝑑) of continuous functions from [0, 1] to R𝑑 endowed with the
supremum norm.

Reference. T.11.2.3. in Stroock&Varadhan (1979) p.272 or T.7.1. in Durrett (1996) p.297
or T.6.5. in Berestycki’s lecture notes SCA (2010) p.91.

Proof. The conditions (i) of the theorem ensure that: the infinitesimal mean and variance
converges to those of the diffusion limit; there is no jump in the limit. The idea of the
proof is a standard application of Prokhorov’s theorem. We first prove tightness, then
ensure of the uniqueness of subsequential limits. Before that, a localization argument can
be used to replace the conditions (i) by the stronger conditions

lim
ℎ→0

sup
𝑥∈𝑅𝑑

|𝑎ℎ𝑖 𝑗 (𝑥) − 𝑎𝑖 𝑗 (𝑥) | = 0,

lim
ℎ→0

sup
𝑥∈𝑅𝑑

|𝑏ℎ𝑖 (𝑥) − 𝑏𝑖 (𝑥) | = 0,

lim
ℎ→0

sup
𝑥∈𝑅𝑑

Δℎ𝜀 (𝑥) = 0,

𝑎ℎ𝑖 𝑗 , 𝑏
ℎ
𝑖 , and Δℎ are uniformly bounded in ℎ and 𝑥.

We start by proving tightness. Let 𝑓 be a bounded measurable function and define

𝐿ℎ 𝑓 (𝑥) :=
∫

( 𝑓 (𝑦) − 𝑓 (𝑥))𝐾ℎ (𝑥, 𝑑𝑦).

This can be interpreted as the infinitesimal generator of the discrete-time process consid-
ered. Since 𝑋ℎ0 = 𝑥ℎ is nonrandom and converges towards a fixed 𝑥0, the condition (i) in
Lemma 23 is verified. To prove tightness, we now verify condition (ii). Using Lemma 26,
it suffices to prove that for all 𝑥 ∈ R𝑑 and for all 𝛿 sufficiently small,

(a) 𝑃𝑥 (𝜃 > 𝜀/4) < 𝜀/2 as ℎ → 0,
(b) 𝑃𝑥 (𝜎 < 𝛿) < 𝜀/2 as ℎ → 0.

To prove (a), note that there are at most 1/ℎ time steps in [0, 1], so by union bound,

𝑃𝑥 (𝜃 > 𝜀) ≤
1
ℎ

sup
𝑦

Πℎ (𝑦, 𝐵(𝑦, 𝜀)𝑐) ≤ sup
𝑦

Δℎ𝜀 (𝑦) → 0.

In particular, for ℎ sufficiently small, 𝑃𝑥 (𝜃 > 𝜀/4) < 𝜀/2.
To prove (b), we start by estimating 𝑃𝑥 (𝜏1 ≤ 𝑢) for small 𝑢. By Lemma 25,

E ( 𝑓𝑥,𝜀 (𝑌 ℎ𝑘+1) − 𝑓𝑥,𝜀 (𝑌 ℎ𝑘 ) − ℎ𝐶𝜀) ≥ 0,

so that
𝑓𝑥,𝜀 (𝑌 ℎ𝑘 ) + 𝐶𝜀ℎ𝑘, 𝑘 = 0, 1, . . .

is a submartingale. Set 𝜏 := inf{𝑘 ≥ 1 : ∥𝑌 ℎ
𝑘
− 𝑥∥ > 𝜀}, so that 𝜏1 = ℎ𝜏. Using the
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optional stopping theorem at 𝜏 ∧ 𝑢′ with 𝑢′ = 𝑢/ℎ, we get

E 𝑥 ( 𝑓𝑥,𝜀 (𝑌 ℎ𝜏∧𝑢′) + 𝐶𝜀ℎ(𝜏 ∧ 𝑢′)) ≥ E 𝑥 ( 𝑓𝑥,𝜀 (𝑌 ℎ0 )) = 1.

On the event (𝜏 ≤ 𝑢′), we have that ∥𝑌 ℎ
𝑘
− 𝑥∥ ≥ 𝜀, so that 𝑓𝑥,𝜀 (𝑌 ℎ𝜏∧𝑢′) = 0, and since

𝜏 ∧ 𝑢′ ≤ 𝑢′, we have

𝑃𝑥 (𝜏1 ≤ 𝑢) ≤ 𝑃(𝜏 ≤ 𝑢′) ≤ E 𝑥 (1 − 𝑓𝑥,𝜀 (𝑌 ℎ𝜏∧𝑢′)) ≤ ℎ𝐶𝜀𝑢
′ = 𝐶𝜀𝑢

where the first inequality follows from the fact that the term in the expectation is non-
negative and is equal to 1 if 𝜏 ≤ 𝑢′. Let 𝑝 := 𝑃𝑥 (𝜏1 ≤ 𝑢). For all 𝑢 > 0,

E 𝑥 (𝑒−𝜏1) ≤ 𝑃(𝜏1 ≤ 𝑢) + 𝑒−𝑢𝑃𝑥 (𝜏1 ≥ 𝑢)
= 𝑝 + 𝑒−𝑢 (1 − 𝑝) = 𝑒−𝑢 + 𝑝(1 − 𝑒−𝑢)
≤ 𝑒−𝑢 + 𝑝𝑢 ≤ 1 − 𝑢 + 𝐶𝜀𝑢2.

Thus by choosing 𝑢 small enough, we can find 𝜆 < 1, independent of 𝑥 and 𝛿, such that
E 𝑥 (𝑒−𝜏1) ≤ 𝜆. By iterating and using the strong Markov property, we getE 𝑥 (𝑒−𝜏𝑛) ≤ 𝜆𝑛.
By Markov’s inequality,

𝑃𝑥 (𝑁 > 𝑛) = 𝑃𝑥 (𝜏𝑛 < 1) ≤ 𝑃𝑥 (𝑒−𝜏𝑛 ≥ 𝑒−1)
≤ 𝑒E 𝑥 (𝑒−𝜏𝑛) ≤ 𝑒𝜆𝑛.

Observe that for any 𝑘 ∈ N,

𝑃𝑥 (𝜎 ≤ 𝛿) ≤ 𝑘 sup
𝑦

𝑃𝑦 (𝜏1 ≤ 𝛿) + 𝑃𝑥 (𝑁 > 𝑘)

≤ 𝑘𝐶𝜀𝛿 + 𝑒𝜆𝑘 .

By taking 𝑘 large enough and 𝛿 small enough so that 𝑒𝜆𝑘 < 𝜀/4 and 𝑘𝐶𝜀𝛿 < 𝜀/4, we get
𝑃𝑥 (𝜎 ≤ 𝛿) < 𝜀/2. This concludes the proof for tightness.

We now prove the uniqueness of subsequential limits. Since the martingale problem
𝑀 (𝑎, 𝑏) is assumed well-posed, it suffices to show that the limit of any weakly convergent
subsequent solves the martingale problem 𝑀 (𝑎, 𝑏). We first show that as ℎ → 0 the
operator 𝐿ℎ converges in an appropriate sense to the infinitesimal generator 𝐿 of the
solution

𝐿 𝑓 (𝑥) = 1
2

𝑑∑︁
𝑖, 𝑗=1

𝑎𝑖 𝑗 (𝑥)
𝜕2 𝑓

𝜕𝑥𝑖𝑥 𝑗
(𝑥) +

𝑑∑︁
𝑖=1

𝑏𝑖 (𝑥)
𝜕 𝑓

𝜕𝑥𝑖
(𝑥).

More precisely, we show that for any 𝑓 ∈ 𝐶2
𝐾

, 𝐿ℎ 𝑓 (𝑥) converges uniformly in 𝑥 ∈ R𝑑 to
𝐿 𝑓 (𝑥) as ℎ → 0. By Taylor’s theorem for ℎ(𝑡) := 𝑓 (𝑥 + 𝑡 (𝑦 − 𝑥)) on 𝑡 ∈ [0, 1], there
exists 𝑐𝑥𝑦 ∈ [0, 1] such that

𝑓 (𝑦) − 𝑓 (𝑥) = ℎ′(0) + ℎ′′(𝑐𝑥𝑦)/2!

=
∑︁
𝑖

(𝑦𝑖 − 𝑥𝑖)𝐷𝑖 𝑓 (𝑥) +
∑︁
𝑖, 𝑗

(𝑦𝑖 − 𝑥𝑖) (𝑦 𝑗 − 𝑥 𝑗)𝐷𝑖 𝑗 𝑓 (𝑧𝑥𝑦)

where 𝑧𝑥𝑦 = 𝑥 + 𝑐𝑥𝑦 (𝑦 − 𝑥). Then integrating over ∥𝑦 − 𝑥∥ ≤ 1 with respect to 𝐾ℎ (𝑥, 𝑑𝑦),
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we get

𝐿ℎ 𝑓 (𝑥) =
∑︁
𝑖

𝑏ℎ𝑖 (𝑥)𝐷𝑖 𝑓 (𝑥)

+
∫
∥𝑦−𝑥 ∥≤1

∑︁
𝑖, 𝑗

(𝑦𝑖 − 𝑥𝑖) (𝑦 𝑗 − 𝑥 𝑗)𝐷𝑖 𝑗 𝑓 (𝑧𝑥𝑦)𝐾ℎ (𝑥, 𝑑𝑦)

+
∫
∥𝑦−𝑥 ∥>1

( 𝑓 (𝑦) − 𝑓 (𝑥))𝐾ℎ (𝑥, 𝑑𝑦).

Recalling the definition of Δℎ1 , the final term goes to 0 uniformly in 𝑥 by assumption (i.3).
For the first term, note that�����∑︁

𝑖

𝑏ℎ𝑖 (𝑥)𝐷𝑖 𝑓 (𝑥) −
∑︁
𝑖

𝑏𝑖 (𝑥)𝐷𝑖 𝑓 (𝑥)
����� ≤ sup

𝑖

|𝑏ℎ𝑖 (𝑥) − 𝑏𝑖 (𝑥) |∥𝐷𝑖 𝑓 ∥∞,

which converges to 0 uniformly in 𝑥 by assumption (i.2) since 𝑓 ∈ 𝐶2
𝐾

. For the interme-
diate term, note first that����� ∫∥𝑦−𝑥 ∥≤1

∑︁
𝑖, 𝑗

(𝑦𝑖 − 𝑥𝑖) (𝑦 𝑗 − 𝑥 𝑗)𝐷𝑖 𝑗 𝑓 (𝑧𝑥𝑦)𝐾ℎ (𝑥, 𝑑𝑦) −
∑︁
𝑖, 𝑗

𝑎𝑖 𝑗 (𝑥)𝐷𝑖 𝑗 𝑓 (𝑥)
�����

≤
�����∑︁
𝑖, 𝑗

𝑎ℎ𝑖 𝑗 (𝑥)𝐷𝑖 𝑗 𝑓 (𝑥) −
∑︁
𝑖, 𝑗

𝑎𝑖 𝑗 (𝑥)𝐷𝑖 𝑗 𝑓 (𝑥)
�����

+
����� ∫∥𝑦−𝑥 ∥≤1

∑︁
𝑖, 𝑗

(𝑦𝑖 − 𝑥𝑖) (𝑦 𝑗 − 𝑥 𝑗) (𝐷𝑖 𝑗 𝑓 (𝑧𝑥𝑦) − 𝐷𝑖 𝑗 𝑓 (𝑥))𝐾ℎ (𝑥, 𝑑𝑦)
�����.

The first term converges to 0 uniformly in 𝑥 by assumption (i.1) since the derivatives of
𝑓 are uniformly bounded. The second term can be split in an integral over∥𝑦 − 𝑥∥ > 𝜀

and one over ∥𝑦 − 𝑥∥ ≤ 𝜀. The first one converges to 0 uniformly in 𝑥 by assumption (i.3)
since the integrand is bounded. For the second term, define

Γ(𝜀) := sup
𝑖, 𝑗

sup
∥𝑦−𝑥 ∥≤𝜀

|𝐷𝑖 𝑗 𝑓 (𝑧𝑥𝑦) − 𝐷𝑖 𝑗 𝑓 (𝑥) |.

Since 𝑧𝑥𝑦 lies on the segment between 𝑥 and 𝑦 and𝐷𝑖 𝑗 𝑓 is continuous and hence uniformly
continuous on compact sets, we have that Γ(𝜀) → 0 as 𝜀 → 0. By the Cauchy–Schwarz
inequality,����� ∫∥𝑦−𝑥 ∥≤𝜀

∑︁
𝑖, 𝑗

(𝑦𝑖 − 𝑥𝑖) (𝑦 𝑗 − 𝑥 𝑗) (𝐷𝑖 𝑗 𝑓 (𝑧𝑥𝑦) − 𝐷𝑖 𝑗 𝑓 (𝑥))𝐾ℎ (𝑥, 𝑑𝑦)
�����

≤ Γ(𝜀)
∫
∥𝑦−𝑥 ∥≤𝜀

∥𝑦 − 𝑥∥2𝐾ℎ (𝑥, 𝑑𝑦),

which concludes the proof that ∥𝐿ℎ 𝑓 − 𝐿 𝑓 ∥∞ → 0. Now, fix a sequence ℎ𝑛 → 0 such
that 𝑋ℎ𝑛 → 𝑋 weakly in 𝐷 as 𝑛→ ∞. Fix 𝑠 < 𝑡. By definition of 𝐿ℎ,

𝑓 (𝑋ℎ𝑛
𝑘ℎ𝑛

) −
𝑘−1∑︁
𝑗=0

ℎ𝑛𝐿
ℎ𝑛 𝑓 (𝑋ℎ𝑛

𝑗ℎ𝑛
) , 𝑘 = 0, 1, . . .
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is a (discrete-time) martingale. The martingale property implies that for any F𝑠-
measurable function 𝑔 : 𝐷 → R,

E 𝑥
©­«𝑔(𝑋ℎ𝑛) ©­« 𝑓 (𝑋ℎ𝑛𝑙𝑛ℎ𝑛) − 𝑓 (𝑋ℎ𝑛

𝑘𝑛ℎ𝑛
) −

𝑙𝑛−1∑︁
𝑗=𝑘𝑛

ℎ𝑛𝐿
ℎ𝑛 𝑓 (𝑋ℎ𝑛

𝑗ℎ𝑛
)ª®¬ª®¬ = 0

where 𝑘𝑛 = ⌈𝑠/ℎ𝑛⌉ and 𝑙𝑛 = ⌈𝑡/ℎ𝑛⌉. Using the Skorokhod representation theorem,
there exists 𝑌𝑛 such that 𝑌𝑛 =𝑑 𝑋ℎ𝑛 and 𝑌𝑛 → 𝑌 a.s., where 𝑌 =𝑑 𝑋 . Using that
∥𝐿ℎ 𝑓 − 𝐿 𝑓 ∥∞ → 0 and the bounded convergence theorem, it follows by taking the limit
as 𝑛→ ∞ that

E 𝑥

(
𝑔(𝑋)

(
𝑓 (𝑋𝑡 ) − 𝑓 (𝑋𝑠) −

∫ 𝑡

𝑠

𝐿 𝑓 (𝑋𝑢) 𝑑𝑢
))

= 0.

Since 𝑔 is arbitrary, it follows that

𝑓 (𝑋𝑡 ) −
∫ 𝑡

0
𝐿 𝑓 (𝑋𝑢) 𝑑𝑢 , 𝑡 ≥ 0

is a martingale for all 𝑓 ∈ 𝐶2
𝐾

. Hence 𝑋 is a solution to the (SV) martingale problem, and
hence to 𝑀 (𝑎, 𝑏). Since 𝑀 (𝑎, 𝑏) has a unique solution, this concludes the proof. □

Lemma 25. Let 𝑔 : R → R such that 𝑔 ∈ 𝐶2, 0 ≤ 𝑔 ≤ 1, 𝑔(𝑥) = 0 if 𝑥 ≥ 1, 𝑔(0) = 1.
Define for 𝑥 ∈ R𝑑 , 𝑓𝜀 (𝑥) := 𝑔(∥𝑥∥2/𝜀2). Define for 𝑎 ∈ R𝑑 , 𝑓𝑎,𝜀 (𝑥) := 𝑓𝜀 (𝑥 − 𝑎). Then
there exists 𝐶𝜀 < ∞, independent of ℎ, such that ∥𝐿ℎ 𝑓𝑎,𝜀 (𝑥)∥ ≤ 𝐶𝜀 for all 𝑎, 𝑥 ∈ R𝑑 .

Proof. By Taylor’s theorem for 𝜙(𝑡) := 𝑓𝑎,𝜀 (𝑥 + 𝑡 (𝑦 − 𝑥)) on 𝑡 ∈ [0, 1], there exists
𝑐𝑥𝑦 ∈ [0, 1] such that

𝑓𝑎,𝜀 (𝑦) − 𝑓𝑎,𝜀 (𝑥) = 𝜙′(0) + 𝜙′′(𝑐𝑥𝑦)/2!

=
∑︁
𝑖

(𝑦𝑖 − 𝑥𝑖)𝐷𝑖 𝑓 (𝑥) +
∑︁
𝑖, 𝑗

(𝑦𝑖 − 𝑥𝑖) (𝑦 𝑗 − 𝑥 𝑗)𝐷𝑖 𝑗 𝑓 (𝑧𝑥𝑦)

where 𝑧𝑥𝑦 = 𝑥 + 𝑐𝑥𝑦 (𝑦 − 𝑥). Then integrating with respect to 𝐾ℎ (𝑥, 𝑑𝑦), we get

𝐿ℎ 𝑓𝑎,𝜀 (𝑥) =
∫

( 𝑓𝑎,𝜀 (𝑦) − 𝑓𝑎,𝜀 (𝑥))𝐾ℎ (𝑥, 𝑑𝑦)

≤
�����∇ 𝑓𝑎,𝜀 (𝑥) · ∫∥𝑦−𝑥 ∥≤1

(𝑦 − 𝑥)𝐾ℎ (𝑥, 𝑑𝑦)
�����

+
����� ∫∥𝑦−𝑥 ∥≤1

∑︁
𝑖, 𝑗

(𝑦𝑖 − 𝑥𝑖) (𝑦 𝑗 − 𝑥 𝑗)𝐷𝑖 𝑗 𝑓𝑎,𝜀 (𝑧𝑥𝑦)𝐾ℎ (𝑥, 𝑑𝑦)
�����

+ 2∥ 𝑓𝑎,𝜀 ∥∞𝐾ℎ (𝑥, 𝐵(𝑥, 1)𝑐).

Define 𝐴𝜀 := sup𝑥 ∥∇ 𝑓𝑎,𝜀 (𝑥)∥ and 𝐵𝜀 := sup𝑦 ∥𝐷 𝑓𝑎,𝜀 (𝑦)∥. We have����∑︁
𝑖, 𝑗

(𝑦𝑖 − 𝑥𝑖) (𝑦 𝑗 − 𝑥 𝑗)𝐷𝑖 𝑗 𝑓𝑎,𝜀 (𝑧𝑥𝑦)
���� ≤ ∥𝑦 − 𝑥∥2𝐵𝜀 ,
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hence

𝐿ℎ 𝑓𝑎,𝜀 (𝑥) ≤ 𝐴𝜀 ∥|𝑏ℎ (𝑥)∥ + 𝐵𝜀
∫
∥𝑦−𝑥 ∥≤1

∥𝑦 − 𝑥∥2𝐾ℎ (𝑥, 𝑑𝑦) + 2𝐾ℎ (𝑥, 𝐵(𝑥, 1)𝑐).

Since
∫
∥𝑦−𝑥 ∥≤1 ∥𝑦 − 𝑥∥

2𝐾ℎ (𝑥, 𝑑𝑦) =
∑
𝑖 𝑎
ℎ
𝑖𝑖
(𝑥), the uniform boundedness of the stronger

assumptions yields the result. □

Lemma 26. Define the random variables

𝜏0 = 0, 𝜏𝑛 := inf{𝑡 ≥ 𝜏𝑛−1 : ∥𝑋ℎ𝑡 − 𝑋ℎ𝜏𝑛−1
∥ ≥ 𝜀},

𝑁 := min{𝑛 : 𝜏𝑛 > 1},
𝜎 := min{𝜏𝑛 − 𝜏𝑛−1 : 1 ≤ 𝑛 ≤ 𝑁},
𝜃 := max{∥𝑋ℎ (𝑡) − 𝑋ℎ (𝑡−)∥ : 0 < 𝑡 ≤ 1}.

If 𝜎 > 𝛿 and 𝜃 < 𝜀, then osc𝛿 (𝑋ℎ) ≤ 4𝜀.

Proof. By definition of osc𝛿 , we need to show that for all 𝑠, 𝑡 ∈ [0, 1] with |𝑠 − 𝑡 | ≤ 𝛿,
|𝑋ℎ (𝑠) − 𝑋ℎ (𝑠) | ≤ 4𝜀. Since |𝑠 − 𝑡 | ≤ 𝛿 < 𝜎, 𝑠 and 𝑡 can only span at most one of the
intervals [𝜏𝑛−1, 𝜏𝑛], and the definition of the stopping times 𝜏𝑛 ensures that 𝑋ℎ does not
vary by more than 2𝜀 on such an interval. More precisely: if 𝜏𝑛−1 ≤ 𝑠 < 𝑡 < 𝜏𝑛, then
|𝑋ℎ (𝑠) − 𝑋ℎ (𝑡) | ≤ 2𝜀; if 𝜏𝑛−1 ≤ 𝑠 < 𝜏𝑛 ≤ 𝑡, then

|𝑋ℎ (𝑠) − 𝑋ℎ (𝑡) | ≤|𝑋ℎ (𝑠) − 𝑋ℎ (𝜏𝑛−1) | + |𝑋ℎ (𝑡) − 𝑋ℎ (𝜏𝑛) |
+ |𝑋ℎ (𝜏𝑛) − 𝑋ℎ (𝜏−𝑛 ) | + |𝑋ℎ (𝜏−𝑛 ) − 𝑋ℎ (𝜏𝑛−1) |

≤4𝜀.

□

Example 27 (Ehrenfest Chain). Two urns contain a total of 2𝑛 balls. At each time 𝑚, we
pick one ball uniformly at random from the 2𝑛 balls and move it to the other urn. We
expect the number of balls in the left urn to be about 𝑛+𝐶

√
𝑛, so we define 𝑍𝑚 the number

of balls in the left urn and consider the rescaled process

𝑌
1/𝑛
𝑚 :=

𝑍𝑚 − 𝑛
√
𝑛

.

Suppose that 𝑍0 = 𝑛. Define

𝑋
1/𝑛
𝑡 := 𝑌1/𝑛

⌊𝑡𝑛⌋ =
𝑍⌊𝑡𝑛⌋ − 𝑛√

𝑛
.

Then, as 𝑛→ ∞, the process 𝑋1/𝑛 converges weakly to an Ornstein–Uhlenbeck diffusion
process 𝑋 with unit viscosity, that is, the pathwise unique solution to the SDE given by

𝑑𝑋𝑡 = −𝑋𝑡 𝑑𝑡 + 𝑑 𝐵𝑡 , 𝑋0 = 0.

To see this, note first that the space of 𝑌1/𝑛 is 𝐸𝑛 = {𝑘/
√
𝑛 : −𝑛 ≤ 𝑘 ≤ 𝑛} and that the
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transition kernel 𝐾1/𝑛 (𝑥, 𝑑𝑦) is given by 𝑛Π1/𝑛 (𝑥, 𝑑𝑦) where

Π1/𝑛 (𝑥, 𝑥 + 𝑛−1/2) = 𝑛 − 𝑥
√
𝑛

2𝑛
, Π1/𝑛 (𝑥, 𝑥 − 𝑛−1/2) = 𝑛 + 𝑥

√
𝑛

2𝑛
.

Indeed, if𝑌1/𝑛
𝑚 = 𝑥, then the number 𝑍𝑚 of particles in the first container is 𝑛+𝑥

√
𝑛, and if

one particle is chosen, which happens with probability (𝑛+𝑥
√
𝑛)/2𝑛, then 𝑍𝑚+1 = 𝑍𝑚−1

and 𝑌𝑚+1 = 𝑥 − 𝑛−1/2. Since the chain can only make jumps of size 1/
√
𝑛, then condition

(i.3) holds trivially. Moreover, we have

𝑏1/𝑛 (𝑥) =
∫

(𝑦 − 𝑥)𝐾1/𝑛 (𝑥, 𝑑𝑦) = 𝑛
(

1
√
𝑛

𝑛 − 𝑥
√
𝑛

2𝑛
− 1
√
𝑛

𝑛 + 𝑥
√
𝑛

2𝑛

)
= −𝑥,

and
𝑎1/𝑛 (𝑥) =

∫
(𝑦 − 𝑥)2𝐾1/𝑛 (𝑥, 𝑑𝑦) = 𝑛

(
1
𝑛

𝑛 − 𝑥
√
𝑛

2𝑛
+ 1
𝑛

𝑛 + 𝑥
√
𝑛

2𝑛

)
= 1,

hence the coefficients are independent of 𝑛 and so satisfy the conditions (i.1-2). Moreover,
the limiting coefficients 𝑏(𝑥) = −𝑥 and 𝑎(𝑥) = 1 are Lipschitz continuous and so the
martingale problem is well-posed. The result then follows directly from Theorem 24.

Example 28 (Branching Processes). Consider a branching process where 𝑍𝑚 denotes the
size of the population at time 𝑚. At each period 𝑚, each individual in the population has
an independent and identically distributed number of offspring in the next period 𝑚 + 1.
Suppose the probability of having 𝑘 children is 𝑝𝑘 with mean 1 + 𝛽𝑛/𝑛 and variance 𝜎2

𝑛 .
Define the rescaled variable

𝑌
1/𝑛
𝑚 :=

𝑍𝑚

𝑛

and consider the process 𝑋1/𝑛 given by

𝑋
1/𝑛
𝑡 := 𝑌1/𝑛

⌊𝑡𝑛⌋ =
𝑍⌊𝑡𝑛⌋
𝑛

.

Suppose that as 𝑛→ ∞,

𝛽𝑛 → 𝛽 ∈ (−∞,∞),
𝜎𝑛 → 𝜎 ∈ (0,∞),

for any 𝛿 > 0,
∑︁
𝑘>𝛿𝑛

𝑘2𝑝𝑛𝑘 → 0.

Then 𝑋1/𝑛 converges weakly to Feller’s branching diffusion 𝑋 , that is, the solution to the
SDE given by

𝑑𝑋𝑡 = 𝛽𝑋𝑡 𝑑𝑡 + 𝜎
√︁
𝑋𝑡 𝑑𝐵𝑡 .
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