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1 Gaussian sequence model

The Gaussian sequence model or Gaussian model in sequence space is given for
𝑛 ∈ N by

𝑌𝑖 = \𝑖 +
𝜎
√
𝑛
𝑍𝑖 , 𝑖 ∈ I ⊆ N,

where the \𝑖 are unknown constants, 𝜎 > 0 is a known constant, and 𝑍𝑖
𝑖𝑖𝑑∼ 𝑁 (0, 1). In

other words,

𝑌𝑖 ∼ 𝑁

(
\𝑖 ,

𝜎2

𝑛

)
,

that is, we observe a sequence (finite or infinite) (𝑌𝑖)𝑖∈I of Gaussian random variables with
unknown means \𝑖 but known variance 𝜎2/𝑛. Since the variables 𝑍𝑖 are independent, the
variables𝑌𝑖 are also independent. Note that there is something natural (namely averaging,
for connecting the model to nonparametric regression) but nothing special about the
scaling

√
𝑛: a more general formulation of the Gaussian sequence model is given by

𝑌𝑖 = \𝑖 + 𝜎Z𝑛𝑍𝑖 , 𝑖 ∈ I ⊆ N,

for some known constants Z𝑛 (which yields back the previous model for Z𝑛 = 1/
√
𝑛).

If I = {1, . . . , 𝑛}, then the Gaussian sequence model is known as the normal means
model and is given for 𝑛 ∈ N by

𝑌𝑖 = \𝑖 +
𝜎
√
𝑛
𝑍𝑖 , 𝑖 ∈ {1, . . . , 𝑛}.

That is,

𝑌𝑖 ∼ 𝑁

(
\𝑖 ,

𝜎2

𝑛

)
, 𝑖 ∈ {1, . . . , 𝑛}.

Since the variables𝑌𝑖 are independent, the model rewrites again as a multivariate Gaussian

𝑌 ∼ 𝑁

(
\,

𝜎2

𝑛
𝐼𝑛

)
,

where 𝑌 = (𝑌1, . . . , 𝑌𝑛) and \ = (\1, . . . , \𝑛). Even if the normal means model is
finite-dimensional for 𝑛 fixed, it is in essence nonparametric for the number |I | = 𝑛 of
unknowns \𝑖 grows as fast as the number 𝑛 of data available. The generalization to other
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scalings in this case takes the form 𝑌 ∼ 𝑁 (\, Z2
𝑖
𝜎2𝐼𝑛). This includes for Z𝑖 = 1 the

simple multivariate Gaussian mean model given by 𝑌 ∼ 𝑁 (\, 𝜎2𝐼𝑛) (in which Stein’s
phenomenon is usually exhibited).

2 Gaussian white noise model

The Gaussian white noise model is given for 𝑛 ∈ N by the stochastic differential
equation

𝑑𝑌 (𝑡) = 𝑓 (𝑡) 𝑑𝑡 + 𝜎
√
𝑛
𝑑𝑊 (𝑡), 𝑡 ∈ [0, 1],

where 𝑓 ∈ 𝐿2( [0, 1]) is an unknown function, 𝜎 > 0 is a known constant, and 𝑊 is a
standard Brownian motion. This rewrites in integral form as

𝑌 (𝑡) =
∫ 𝑡

0
𝑓 (𝑠) 𝑑𝑠 + 𝜎

√
𝑛
𝑊 (𝑡), 𝑡 ∈ [0, 1],

and defines a stochastic process 𝑌 := (𝑌 (𝑡))𝑡∈[0,1] which is assumed observed. Since 𝑌 is
observed, we naturally observe the random variable

∫ 1
0 𝑔(𝑡) 𝑑𝑌 (𝑡) for any 𝑔 ∈ 𝐿2( [0, 1]).

From the differential equation defining 𝑌 , we directly have for any 𝑔 ∈ 𝐿2( [0, 1]) that∫ 1

0
𝑔(𝑡) 𝑑𝑌 (𝑡) =

∫ 1

0
𝑔(𝑡) 𝑓 (𝑡) 𝑑𝑡 + 𝜎

√
𝑛

∫ 1

0
𝑔(𝑡) 𝑑𝑊 (𝑡).

If we take an orthonormal basis (𝑡 ↦→ 𝜑𝑖 (𝑡))𝑖∈N of 𝐿2( [0, 1]) and define

𝑌𝑖 =

∫ 1

0
𝜑𝑖 (𝑡) 𝑑𝑌 (𝑡), \𝑖 =

∫ 1

0
𝜑𝑖 (𝑡) 𝑓 (𝑡) 𝑑𝑡, 𝑍𝑖 =

∫ 1

0
𝜑𝑖 (𝑡)𝑑𝑊 (𝑡),

then the previous equation yields

𝑌𝑖 = \𝑖 +
𝜎
√
𝑛
𝑍𝑖 ,

where \𝑖 is deterministic, 𝑍𝑖 ∼ 𝑁 (0, ∥𝜑𝑖 ∥2
2) = 𝑁 (0, 1), and cov(𝑍𝑖 , 𝑍 𝑗) = 𝛿𝑖, 𝑗 (the two

last properties following from the properties of the Brownian motion). It follows that
the Gaussian white noise model is observationally equivalent to the Gaussian sequence
model. We can generalize the Gaussian white noise model as we did with the Gaussian
sequence model by considering

𝑑𝑌 (𝑡) = 𝑓 (𝑡) 𝑑𝑡 + 𝜎Z𝑛𝑑𝑊 (𝑡), 𝑡 ∈ [0, 1] .

In this case, the connection between the two models generalize without modification.

3 Links to (Gaussian) nonparametric regression

A nonparametric regression is a model of the form

𝑌𝑖 = 𝑓 (𝑥𝑖) + Y𝑖 , 𝑖 = 1, . . . , 𝑛,

2



where 𝑌𝑖 is an observed real random variable, 𝑓 : [0, 1] → R is some unknown function
(called the regression function), 𝑥𝑖 ∈ [0, 1] is some observed deterministic value, and
Y𝑖 is some unobserved random variable. The model naturally generalizes to any compact
interval [𝑎, 𝑏]. Since the 𝑥𝑖 are deterministic, the model is said to be of fixed design.
If it is assumed in the fixed design that 𝑥𝑖 = 𝑖/𝑛, then the design is said to be equally
spaced. (This can be understood as sampling the unknown function on an equally
spaced grid of [0,1] that grows dense in [0,1] as 𝑛 → ∞ – Gine&Nickl MFSIDSM p.6).
It is also possible to generalize the model by taking instead of observed deterministic
𝑥𝑖 observed random variables 𝑋𝑖 (which reduces to the latter by taking 𝑋𝑖 = 𝑥𝑖 a.s.).
In this case, the model is said to be of random design (and "[o]ne can then either
proceed to argue conditionally on the realisations 𝑋𝑖 = 𝑥𝑖 , or one takes this randomness
explicitly into account by making probability statements under the law[s of the 𝑋𝑖 and
Y𝑖] simultaneously." Gine&Nickl MFSIDSM p.6). If the Y𝑖 are assumed to be identically
distributed according to 𝑁 (0, 𝜎2) for some 𝜎 > 0, then the nonparametric regression is
said to be Gaussian. (We could also write Y𝑖 = 𝜎𝑍𝑖 where 𝑍𝑖 ∼ 𝑁 (0, 1) to match the
previous notations). It is generally assumed that the Y𝑖 are not only identically distributed
but also independent. (We will always assume it in the definition of Gaussian in what
follows). The objective of nonparametric regression is to recover the unknown regression
function 𝑓 . It is a nonparametric problem since 𝑓 is infinite-dimensional. For the task to
make sense (that is, estimating an infinite-dimensional object by only sampling finitely
many values), it is necessary to restrict "slightly" the class F in which 𝑓 belongs (but
not up to parametricity, that is, a finite-dimensional class F ). Examples of such classes
include the set of continuous functions on [0, 1], the set of convex functions on [0, 1],
etc.

The Gaussian nonparametric regression with fixed equally spaced design on [0, 1]
is thus given by

𝑌𝑖 = 𝑓

(
𝑖

𝑛

)
+ Y𝑖 , Y𝑖

𝑖𝑖𝑑∼ 𝑁 (0, 𝜎2), 𝑖 = 1, . . . , 𝑛,

where 𝑓 : [0, 1] → R belongs in some class F of functions. We now informally show that
this model is very close (and asymptotically equivalent for a rigorously defined notion
of equivalence as that of Le Cam) to the Gaussian sequence model and hence also to
the Gaussian white noise model. Let (𝜑𝑖)𝑖∈N be an orthonormal basis of 𝐿2( [0, 1]) and
define

𝛾𝑖 =
1
𝑛

𝑛∑︁
𝑘=1

𝑌𝑘𝜑𝑖

(
𝑘

𝑛

)
, 𝑓𝑖 =

1
𝑛

𝑛∑︁
𝑘=1

𝑓

(
𝑘

𝑛

)
𝜑𝑖

(
𝑘

𝑛

)
, Z𝑖 =

1
√
𝑛

𝑛∑︁
𝑘=1

𝑍𝑖𝜑 𝑗

(
𝑘

𝑛

)
.

Then the model equation directly yields

𝛾𝑖 = 𝑓𝑖 +
𝜎
√
𝑛
Z𝑖 , 𝑖 = 1 . . . , 𝑛,

which is seen to be a finite approximation version of the Gaussian sequence model as
derived from the Gaussian white noise model.
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