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In many problems, we want to control the behavior (e.g. boundedness or continuity
of the sample path) of stochastic processes (𝑋𝑡 )𝑡∈𝑇 indexed by infinite sets 𝑇 (e.g., a
continuous-time real-valued process which is indexed by some subset of the real line,
an empirical process which is indexed by some set of functions), and consequently that
of families ((𝑋 (𝑖)

𝑡 )𝑡∈𝑇 )𝑖∈𝐼 of stochastic processes (𝑋 (𝑖)
𝑡 )𝑡∈𝑇 indexed by infinite sets 𝑇

(e.g. a sequence of empirical processes). This generally translates into finding maximal
inequalities, that is, bounds on sup𝑡∈𝑇 𝑋𝑡 for some stochastic process (𝑋𝑡 )𝑡∈𝑇 . Impor-
tant examples of maximal inequalities for real-valued processes include: (a) bounds on
sup𝑡∈𝑇 |𝑋𝑡 | yielding boundedness of the sample path; (b) bounds on the modulus of con-
tinuity 𝑤(𝛿) := sup{|𝑋𝑠 − 𝑋𝑡 | : 𝑠, 𝑡 ∈ 𝑇, 𝑑 (𝑠, 𝑡) < 𝛿} yielding uniform continuity of the
sample path. For instance:

(a) control over sup𝑡∈𝑇 |𝑋 (𝑛)
𝑡 | where ((𝑋 (𝑛)

𝑡 )𝑡∈𝑇 )𝑛∈N = ((P𝑛 − P) 𝑓 ) 𝑓 ∈F )𝑛∈N yields
uniform law of large numbers through symmetrization;

(b) control over sup{|𝑋𝑠 − 𝑋𝑡 | : 𝑠, 𝑡 ∈ 𝑇, 𝑑 (𝑠, 𝑡) < 𝛿} where ((𝑋 (𝑛)
𝑡 )𝑡∈𝑇 )𝑛∈N =

((
√
𝑛(P𝑛−P) 𝑓 ) 𝑓 ∈F )𝑛∈N yields uniform limit central theorems through symmetriza-

tion and the asymptotic equicontinuity characterization of weak convergence.

It turns out that maximal inequalities for sub-Gaussian stochastic processes indexed
by infinite sets (from which more general maximal inequalities can be derived) depend
intimately on the regularity of the index sets. This forces us to develop finer ways to
measure the size or complexity of infinite sets than the one provided by cardinality.
Several solutions exist: we develop a metric one, a combinatorial one, and a probabilistic
one and see how they can be used to generate maximal inequalities.

1 Covering, packing, and metric entropy

One of the ideas developed by the Russian school (to measure the size of infinite sets)
is to approximate any infinite set by a minimal finite subset such that every point in the
infinite set is close (to a given degree) to a point in the finite subset.

Recall that a metric on a set 𝑇 is a function 𝑑 : 𝑇 ×𝑇 → R such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑇 ,
𝑑 (𝑥, 𝑦) ≥ 0 with equality if and only 𝑥 = 𝑦, 𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥), and 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) ≤
𝑑 (𝑥, 𝑧). A pseudo-metric is a metric without the requirement that 𝑑 (𝑥, 𝑦) = 0 implies
𝑥 = 𝑦. (In particular, any metric space is a pseudo-metric space). Contrarily to points in
a metric space, points in a pseudo-metric space need not be distinguishable. (It is easy
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to see that by quotienting a pseudo-metric space by the equivalence relation induced by
the vanishing of the pseudo-metric, we obtain a metric space. The metric identification
preserves the induced topologies.)

Definition 1 (Y-Cover). Let (𝑇, 𝑑) be a pseudo-metric space, 𝑆 ⊆ 𝑇 , and Y > 0. A subset
𝐴 ⊆ 𝑆 is said to be a 𝜺-cover of 𝑆 if for all 𝑥 ∈ 𝑆, there exists 𝑦 ∈ 𝐴 such that 𝑑 (𝑥, 𝑦) ≤ Y.

Equivalently, 𝐴 ⊆ 𝑆 is an Y-cover of 𝑆 if and only if 𝑆 ∈ ⋃
𝑥∈𝐴 �̄�(𝑥, Y) (that is, 𝑆 can

be covered by closed balls of radius Y centered at points in 𝐴), hence the terminology.
An Y-cover(ing) is also called an Y-net, an internal Y-cover, or a proper Y-cover. If we
weaken the requirement that 𝐴 ⊆ 𝑆 to 𝐴 ⊆ 𝑇 , then the resulting object is said to be an
external 𝜺-cover. Some authors reverse the terminology and call Y-cover what we define
as external Y-cover.

Definition 2 (Y-Covering Number). Let (𝑇, 𝑑) be a pseudo-metric space, 𝑆 ⊆ 𝑇 , and
Y > 0. The smallest cardinality of any Y-cover of 𝑆 is said to be the 𝜺-covering number
of 𝑆 and is denoted 𝑁 (𝑆, 𝑑, Y). That is,

𝑁 (𝑆, 𝑑, Y) = inf{|𝐴| : 𝐴 is an Y-cover of 𝑆}.

The covering number is thus the minimal number of closed balls centered at points
in 𝑆 of radius Y needed to cover 𝑆. It is an intuitive measure of the size or complexity
of a set. It can be proved that the covering number is decreasing in Y and in many cases
diverges as Y → 0+. By definition, a pseudo-metric space (𝑇, 𝑑) is totally bounded (or
precompact in French) if and only if for all Y > 0, 𝑁 (𝑇, 𝑑, Y) < +∞.

We naturally define the external covering number as 𝑁𝑒𝑥𝑡 (𝑆, 𝑑, Y) := inf{|𝐴| :
𝐴 is an external Y-cover of 𝑆}, that is, the minimal number of closed balls centered at
points in 𝑇 of radius Y needed to cover 𝑆. By definition, 𝑁𝑒𝑥𝑡 (𝑆, 𝑑, Y) ≤ 𝑁 (𝑆, 𝑑, Y), but
one can prove more generally (E.4.2.9. in Vershynin HDP p.83) that

𝑁𝑒𝑥𝑡 (𝑆, 𝑑, Y) ≤ 𝑁 (𝑆, 𝑑, Y) ≤ 𝑁𝑒𝑥𝑡 (𝑆, 𝑑, Y/2).

Definition 3 (Metric Entropy). Let (𝑇, 𝑑) be a pseudo-metric space, 𝑆 ⊆ 𝑇 , and Y > 0.
Then ln 𝑁 (𝑆, 𝑑, Y) is said to be the (𝜺-)metric entropy of 𝑆.

The metric entropy is alternatively called the Kolmogorov entropy. (Sometimes it is
more convenient to take the logarithm in the definition in base 2. In this case, the metric
entropy can be shown to be equivalent to the number of bits needed to specify any point
in 𝑆 up to a given error – P.4.3.1. in Vershynin HDP p.86).

A dual approach to covering is to look at the maximal number points in 𝑆 that stand
apart from each other by at least Y. This leads to the notion of packing numbers. The
advantage of this approach is that there is only an "internal" packing number.

Definition 4 (Y-Packing). Let (𝑇, 𝑑) be a pseudo-metric space, 𝑆 ⊆ 𝑇 , and Y > 0. A
subset 𝐴 ⊆ 𝑆 is said to be an 𝜺-packing of 𝑆 if 𝑥, 𝑦 ∈ 𝐴, 𝑥 ≠ 𝑦 implies that 𝑑 (𝑥, 𝑦) > Y.

Equivalently, 𝐴 ⊆ 𝑆 is an Y-packing of 𝑆 if and only if �̄�(𝑥, Y) ∩ �̄�(𝑥′, Y) = ∅ for all
𝑥 ≠ 𝑥′ ∈ 𝐴 (that is, every distinct pair in 𝐴 is at least separated by Y). An Y-packing is
hence also called an Y-separated set.
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Definition 5 (Y-Packing Number). Let (𝑇, 𝑑) be a pseudo-metric space, 𝑆 ⊆ 𝑇 , and Y > 0.
The largest cardinality of any Y-packing of 𝑆 is said to be the 𝜺-packing number of 𝑆
and is denoted pack(𝑆, 𝑑, Y). That is,

pack(𝑆, 𝑑, Y) = sup{|𝐴| : 𝐴 is an Y-packing of 𝑆}.

In other words, the Y-packing number of 𝑆 is the maximal number points in 𝑆 that can
be made to stand apart from each other by at least Y. The dual flavor of the definitions
suggests that covering and packing can be used interchangeably (up to constants) as
measures of the size of infinite sets; this is indeed the case as proved in next results.

Lemma 6. Let (𝑇, 𝑑) be a pseudo-metric space and 𝑆 ⊆ 𝑇 . If 𝐴 ⊆ 𝑆 is a maximal
Y-packing of 𝑆, then 𝐴 is an Y-cover of 𝑆.

Proof. L.4.2.6. in Vershynin HDP p.82. □

Proposition 7 (Duality of Packing and Covering). Let (𝑇, 𝑑) be a pseudo-metric space,
𝑆 ⊆ 𝑇 , and Y > 0. Then

𝑁 (𝑆, 𝑑, Y) ≤ pack(𝑆, 𝑑, Y) ≤ 𝑁 (𝑆, 𝑑, Y/2).

Proof. L.4.2.8. in Vershynin HDP p.83. □

Last lemma also suggests a simple algorithm to exhibit an Y-cover. Start with 𝐴 = ∅
and add a point to 𝐴 at a distance at least Y from all other points until it is not possible
anymore. If the space is totally bounded, then the algorithm terminates.

We now introduce a few classical examples of covering and packing computations:
the first relates the standard notion of volume in R𝑑 (that is, the Lebesgue measure, which
can be used as a measure of the size of sets) to that of covering number (since flat sets
have volume zero but non-zero covering numbers, there is no strict equivalence); the
second provides bounds on the covering numbers of some function spaces (illustrating
as an aside the curse of dimensionality for rich enough sets). For any set, 𝐴 ⊆ R𝑑 , we
denote vol(𝐴) = _(𝐴) where _ is the Lebesgue measure on R𝑑 .

Proposition 8. Let ∥ · ∥ and ∥ · ∥′ be two norms on R𝑑 and 𝐵 and 𝐵′ the corresponding
unit balls. Then (

1
Y

)𝑑 vol(𝐵)
vol(𝐵′) ≤ 𝑁 (𝐵∥ · ∥ , ∥ · ∥′, Y) ≤

vol( 2
Y
𝐵 + 𝐵′)

vol(𝐵′) .

Proof. L.5.7. in Wainwright HDS p.125. □

Corollary 9 (Covering Number of Unit Ball in R𝑑 in Own Norm). Let ∥ · ∥ be any norm
on R𝑑 and 𝐵 the corresponding unit ball. Then(

1
Y

)𝑑
≤ 𝑁 (𝐵∥ · ∥ , ∥ · ∥, Y) ≤

(
1 + 2

Y

)𝑑
.

Proof. Last proposition with ∥ · ∥′ = ∥ · ∥ (see E.5.8. in Wainwright HDS p.126.). □

Note that this covers also ∥ · ∥ = ∥ · ∥∞ for which the unit ball is 𝐵 = [−1, 1]𝑑 . This
result more generally implies that for fixed 𝑑, as Y → 0+, the metric entropy of the unit
ball ln 𝑁 (𝐵∥ · ∥ , ∥ · ∥, Y) scales as 𝑑 ln(1/Y).
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Proposition 10 (Covering Number of Lipschitz Function Space). Let F = Lip𝐾 ( [0, 1]𝑑)
for 𝐾 > 0 and endow the space with the supremum norm ∥ · ∥∞. Then

2(1/2Y)𝑑 ≤ 𝑁 (F , ∥ · ∥∞, Y) ≤
(
4𝐾
Y

+ 1
)

2(1/Y)𝑑

Proof. (240) in A. N. Kolmogorov, V. M. Tikhomirov "Y-entropy and Y-capacity of sets
in functional spaces" (1959) in Selected Works of Kolmogorov (1993) p.163. See also
E.5.10. in Wainwright HDS p.127. □

2 Vapnik–Chervonenkis theory

If C is a collection of subsets of a set 𝑇 and 𝐴 a set, let us denote C ∩ 𝐴 = 𝐴 ∩ C =

{𝐴 ∩ 𝐶 : 𝐶 ∈ C}. In what follows, we should abbreviate Vapnik–Chervonenkis as VC.

Definition 11 (Shattering). Let 𝑇 be any set and C a collection of subsets of 𝑇 . A set
𝐴 ⊆ 𝑇 is said to be shattered by C if C ∩ 𝐴 = 2𝐴.

In other words, 𝐴 is shattered by C if and only if for every 𝐵 ⊆ 𝐴, there exists 𝐶 ∈ C
such that 𝐴 ∩ 𝐶 = 𝐵, that is, we can recover each subset of 𝐴 by intersecting 𝐴 with
elements of 𝐶. Hence, the bigger C, the more likely it can shatter 𝐴: in particular, if
C1 ⊆ C2 and C1 shatter 𝐴, then C2 shatter 𝐴. If 𝐴 is finite, then 𝐴 is shattered by C if and
only if |C ∩ 𝐴| = 2 |𝐴| (note that we always have |C ∩ 𝐴| ≤ 2 |𝐴|).

Definition 12 (VC Dimension). Let 𝑇 be any set and C a collection of subsets of 𝑇 . The
quantity

vc(C) = sup{|𝐴| : 𝐴 ⊆ 𝑇 is shattered by C}

is said to be the VC dimension of C.

If vc(C) < +∞, then we say that C is a VC class for 𝑇 .
The VC dimension of C is thus the cardinality of the largest set of points in 𝑇 for

which we can recover all possible subsets of these points by intersecting the whole set
of points with elements of C (and +∞ if it is always possible). The bigger C, the larger
the set of points in 𝑇 that C can shatter, and so the bigger the VC dimension of C: hence
vc(C) provides an intuitive measure of the size or complexity of C.

The VC dimension can be equivalently defined as the largest integer 𝑛 such that
|C ∩ {𝑡1, . . . , 𝑡𝑛}| = 2𝑛 for some points 𝑡1, . . . , 𝑡𝑛 ∈ 𝑇 (and +∞ if no such largest integer
exists). This suggests a related measure of the complexity of C.

Definition 13 (Shattering Coefficient). Let 𝑇 be any set and C a collection of subsets of
𝑇 . Then the integers 𝑆C (𝑛) defined for all 𝑛 ∈ N by

𝑆C (𝑛) =
{

0 if |𝑇 | < 𝑛,
max𝑡1,...,𝑡𝑛∈𝑇 |C ∩ {𝑡1, . . . , 𝑡𝑛}| otherwise,

are said to be the shattering coefficients or the growth function of C.

The coefficients are well defined since |C ∩ {𝑡1, . . . , 𝑡𝑛}| ≤ 2𝑛 for all 𝑛 ∈ N. (The
coefficients are mostly of interest when 𝑇 is infinite). If 𝑆C (𝑛) = 2𝑛, then it means
that there is a at least one subset of 𝑇 of cardinality 𝑛 which can be shattered by C. If
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𝑆C (𝑚) < 2𝑚 for some 𝑚 ∈ N, then 𝑆C (𝑛) < 2𝑛 for all 𝑛 ≥ 𝑚. As said, the vc dimension
can then be rewritten as

vc(C) = sup{𝑛 : 𝑛 ∈ N s.t. 𝑆C (𝑛) = 2𝑛}.

The shattering coefficients of C provide another intuitive measure of the complexity or
size of C: the bigger C, the slowest the decrease of 𝑆C (𝑛) in 𝑛 (as bigger sets can be
shattered by C). If C is not a VC class, then |C ∩ {𝑡1, . . . , 𝑡𝑛}| = 2𝑛 for all 𝑛. But even
if C is a VC class with vc(C) = 𝑚, it could be possible that 2𝑛 > 𝑆C (𝑛) ≥ 2𝑛 − 1 for
𝑛 > 𝑚. The Sauer–Shelah lemma shows that it is not possible: if C is a VC class, then
𝑆C (𝑛) grows at most polynomially in 𝑛.

Theorem 14 (Sauer–Shelah Lemma). Let C be VC class for a set 𝑇 . Then for all 𝑛 ≥ 1
and all 𝑡1, . . . , 𝑡𝑛 ∈ 𝑇 ,

𝑆C (𝑛) ≤
vc(C )∑︁
𝑘=0

(
𝑛

𝑘

)
.

Proof. T.13.2. in Lugosi PTPR p.216 or T.8.3.16. in Vershynin HDP p.211. □

Corollary 15. Let C be VC class in a set 𝑇 . Then for all 𝑛 ≥ 1,

𝑆C (𝑛) ≤ (𝑛 + 1)vc(C )

and, if 𝑛 ≥ vc(C),

𝑆C (𝑛) ≤
(
𝑒𝑛

vc(C)

)vc(𝐶 )

Proof. Smart bounding and binomial formula. See C.III-3.14. in Moulines p.191. □

Let us consider a few VC dimension and shattering coefficients computations (see
S.13.2. in Lugosi PTPR p.219 for proofs) which also illustrate the Sauer–Shelah lemma.

Example 16. (from S.13.2. in Lugosi PTPR p.219)
(i) 𝑇 is finite with |𝑇 | = 𝑚, then vc(2𝑇 ) = 𝑚 and 𝑆2𝑇 (𝑛) = 2𝑛 if 𝑛 ≤ 𝑚 and 𝑆2𝑇 (𝑛) = 0

otherwise;
(ii) 𝑇 = R and C = {(−∞, 𝑎] : 𝑎 ∈ R}, then vc(C) = 1 and 𝑆C (𝑛) = 𝑛 + 1;
(iii) 𝑇 = R and C = {[𝑎, 𝑏] : 𝑎, 𝑏 ∈ 𝑇, 𝑎 ≤ 𝑏}, then vc(C) = 2 and 𝑆C (𝑛) =

(𝑛(𝑛 + 1)/2) + 1;
(iv) 𝑇 = R𝑑 and C = {{𝑡 ∈ R𝑑 : 𝑎𝑇 𝑡 ≥ 𝑏} : 𝑎 ∈ R𝑑 , 𝑏 ∈ R}, then vc(C) = 𝑑 + 1 and

𝑆C (𝑛) = 2
∑𝑑
𝑖=0

(𝑛−1
𝑖

)
≤ 2(𝑛 − 1)𝑑 + 2.

(v) 𝑇 = R2 and C = {𝐶 ⊆ R2 : 𝐶 is compact and convex}, then vc(C) = +∞.

Theorem 17 (Dudley (1978)). There exists a constant 𝐾 ∈ (0, +∞) such that for any
class F of measurable Booleans functions over R𝑑 , any probability measure ` on R𝑑 ,
and any Y ∈ (0, 1),

𝑁 (F , ∥ · ∥𝐿2 (`) , Y) ≤
(

2
Y

)𝐾vc(F )
.

Proof. T.8.3.18. in Vershynin HDP p.206. □
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3 Rademacher complexity

Metric entropy provides a measure of the size (or richness) of (infinite) sets based on
metric considerations only. Alternatively, it is possible to obtain measures of the size of
(infinite) sets based on probabilistic considerations. One idea is to consider the maximum
correlation between elements of a set and noise from some distribution. The bigger the
set, the higher the probability to find an element that correlates well with the noise. Both
metric entropy and VC theory can then be used to bound these probabilistic measures of
complexity.

(Note that for clarity we abuse notation by subscripting the expectation with respect
to the pushforward measure.)

Definition 18 (Rademacher Complexity). Let 𝑇 ⊆ R𝑛 be a set. The Rademacher
complexity of 𝑇 is defined as

Rad(𝑇) = 1
𝑛
E 𝜎

(
sup
𝑡∈𝑇

𝑛∑︁
𝑖=1

𝜎𝑖𝑡𝑖

)
,

where 𝜎 = (𝜎1, . . . , 𝜎𝑛) is a vector of i.i.d. Rademacher variables.

The Rademacher complexity is also known as the Rademacher average or mean. It is
also of interest to define an alternative version with absolute value, namely

Rad(𝑇) = 1
𝑛
E 𝜎

(
sup
𝑡∈𝑇

���� 𝑛∑︁
𝑖=1

𝜎𝑖𝑡𝑖

����) .
Then we have (see SLT Raginsky p.68)

Rad(𝑇) ≤ Rad(𝑇) = Rad(𝑇 ∪ −𝑇).

Definition 19 (Rademacher Complexity of a Function Class). Let (𝐸, E , P) be a proba-
bility space and (𝑋1, . . . , 𝑋𝑛) i.i.d. random variables drawn from P. Let F ⊆ R𝐸 be a
class of real-valued functions 𝑓 : 𝐸 → R. Then the Rademacher complexity of F with
respect to P for sample size 𝑛 is defined as

RadP,𝑛 (F ) = E P𝑛
(

1
𝑛
E 𝜎

(
sup
𝑓 ∈F

𝑛∑︁
𝑖=1

𝜎𝑖 𝑓 (𝑋𝑖)
))
,

where 𝜎 = (𝜎1, . . . , 𝜎𝑛) is a vector of i.i.d. Rademacher variables.

The quantity

Rad𝑥1:𝑛 (F ) = 1
𝑛
E 𝜎

(
sup
𝑓 ∈F

𝑛∑︁
𝑖=1

𝜎𝑖 𝑓 (𝑥𝑖)
)

for some 𝑥1:𝑛 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝐸𝑛 is called the empirical Rademacher complexity of
F given 𝑥1:𝑛. Then

Rad𝑥1:𝑛 (F ) = Rad(F ◦ 𝑥1:𝑛),

where 𝐹 ◦ 𝑥1:𝑛 = {( 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛)) : 𝑓 ∈ F }, and

RadP,𝑛 (F ) = E P𝑛 (Rad𝑋1:𝑛 (F )) = E P𝑛 (Rad(F ◦ 𝑋1:𝑛)),
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where 𝑋1:𝑛 is a random vector drawn from P𝑛.
We similarly define absolute versions of these notions, namely

Rad𝑥1:𝑛 (F ) = Rad(F ◦ 𝑥1:𝑛),

and
RadP,𝑛 (F ) = E P𝑛 (Rad(F ◦ 𝑋1:𝑛)).

If we substitute 𝑔𝑖 for 𝜎𝑖 where 𝑔𝑖 ∼ 𝑁 (0, 1) in all the definitions above, then
we get Gaussian complexity counterparts of the Rademacher complexities so defined.
We denote them by substituting Gau for Rad in all the notations above. Gaussian and
Rademacher complexities are equivalent up to logarithmic factors.

Lemma 20. For any set 𝑇 ⊆ R𝑛,√︂
2
𝜋

Rad(𝑇) ≤ Gau(𝑇) ≤ 2
√︁

ln(𝑛)Rad(𝑇).

Proof. E.5.5. in Wainwright HDS p.155. □

Lemma 21. Let 𝑆, 𝑇 ⊆ R𝑛, 𝑎 ∈ R, 𝑏 ∈ R𝑛. For every 𝑖 = 1, . . . , 𝑛, let 𝑓𝑖 ∈ Lip𝐾 (R)
where 𝐾 > 0. Then:

(i) Rad(𝑎𝑇 + 𝑏) = |𝑎 |Rad(𝑇);
(ii) Rad(𝑆 + 𝑇) = Rad(𝑆) + Rad(𝑇);
(iii) Rad(conv(𝑇)) = Rad(𝑇) where conv denotes the convex hull;
(iv) Rad( 𝑓 ◦ 𝑇) ≤ 𝐾Rad(𝑇) where 𝑓 ◦ 𝑇 = {( 𝑓1(𝑡1), . . . , 𝑓𝑛 (𝑡𝑛)) : (𝑡1, . . . , 𝑡𝑛) ∈ 𝑇}.

Proof. S.26.1.1. in Shai&Shai UML p.329 or T.1.16. in Wolf TUM MFSL p.38. □

Theorem 22 (Massart’s Lemma (2000)). Let 𝑇 be a finite subset of R𝑛 and 𝑟 =

sup𝑡∈𝑇 ∥𝑡∥2. Then
Rad(𝑇) ≤ 𝑟

𝑛

√︁
2 ln |𝑇 |.

Proof. L.5.2. in Massart (2000) "Some applications of concentration inequalities to
statistics" p.300. □

Corollary 23. Let (𝐸, E , P) be a probability space. Let 𝐾 > 0 and 𝑆 ⊆ R a finite set of
real numbers such that |𝑠 | ≤ 𝐾 for all 𝑠 ∈ 𝑆. Let F ⊆ 𝑆𝐸 . Then

RadP,𝑛 (F ) ≤ 𝐾
√︂

2 ln 𝑆F (𝑛)
𝑛

.

Proof. C.1.18. in Wolf TUM MFSL p.39 or C.3.8. in Mohri FML p.35. □

Let F ⊆ R𝐸 and 𝑥 ∈ 𝐸𝑛. Define the pseudonorms ∥ · ∥ 𝑝,𝑥 on the linear span of F

by

∥ 𝑓 ∥ 𝑝,𝑥 =
(

1
𝑛

𝑛∑︁
𝑖=1

| 𝑓 (𝑥𝑖) |𝑝
)1/𝑝

for 𝑝 ∈ [1, +∞), and
∥ 𝑓 ∥∞,𝑥 = max

𝑖∈{1,...,𝑛}
| 𝑓 (𝑥𝑖) |.
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(They are nothing more than the 𝐿 𝑝 (pseudo)norms for the probability space with measure
the uniform distribution over the 𝑥𝑖 .) These pseudonorms naturally induce pseudometrics
by taking ( 𝑓 , 𝑔) ↦→ ∥ 𝑓 −𝑔∥ 𝑝,𝑥 . By Jensen’s inequality, ∥ 𝑓 ∥ 𝑝,𝑥 ≤ ∥ 𝑓 ∥ 𝑝,𝑥 for 𝑝 ≤ 𝑞. Then
one gets 𝑁 (F , ∥ · ∥ 𝑝,𝑥 , Y) ≤ 𝑁 (F , ∥ · ∥𝑞,𝑥 , Y) and pack(F , ∥ · ∥ 𝑝,𝑥 , Y) ≤ pack(F , ∥ ·
∥𝑞,𝑥 , Y) for 𝑝 ≤ 𝑞.

Proposition 24 (One-Step Discretization Bound). Let (𝑥1, . . . , 𝑥𝑛) ∈ 𝐸𝑛 and F ⊆ R𝐸 .
If sup 𝑓 ∈F ∥ 𝑓 ∥2,𝑥 ≤ 𝐾 , then

Rad𝑥1:𝑛 (F ) ≤ inf
Y>0

(
Y + 𝐾

√︂
2
𝑛

ln 𝑁 (F , ∥ · ∥1,𝑥 , Y)
)
.

Proof. P.5.2. in Rebeschini AFoL notes (2021) L.5. □

Theorem 25 (Dudley’s Entropy Integral Bound). Let (𝑥1, . . . , 𝑥𝑛) ∈ 𝐸𝑛 and F ⊆ R𝐸 .
If sup 𝑓 ∈F ∥ 𝑓 ∥2,𝑥 ≤ 𝐾 , then

Rad𝑥1:𝑛 (F ) ≤ inf
Y∈[0,𝐾/2]

(
4Y + 12

√
𝑛

∫ 𝐾/2

Y

√︁
ln 𝑁 (F , ∥ · ∥2,𝑥 , 𝜏) 𝑑𝜏

)
.

Proof. P.5.3. in Rebeschini AFoL notes (2021) L.5 (also E.5.24. in Wainwright HDS
p.142 and T.1.19. in Wolf TUM MFSL p.39, but both losing something in the integral
upper limit). See also C.13.2. in BLM CI p.365 for Dudley’s entropy integral. □

Corollary 26. Let (𝑥1, . . . , 𝑥𝑛) ∈ 𝐸𝑛 and F ⊂ {0, 1}𝐸 . Then

Rad𝑥1:𝑛 (F ) ≤ 19
√︂

vc(F )
𝑛

.

Proof. T.5.6. in Rebeschini AFoL notes (2021) L.5 or C.1.25. in Wolf TUM MFSL p.48
(with 𝐾 = 1 but control of the upper limit in the integral yielding 19 instead of 31). □

4 Chaining and sub-Gaussian maximal inequalities

Definition 27 (Sub-Gaussian Process). A stochastic process (𝑋𝑡 )𝑡∈𝑇 is said to be a sub-
Gaussian process with respect to a pseudodistance 𝜌 on 𝑇 if E (𝑋𝑡 ) = 0 and

E
(
𝑒_(𝑋𝑡−𝑋𝑠 )

)
≤ 𝑒_2𝜌(𝑡 ,𝑠)2/2

for all 𝑠, 𝑡 ∈ 𝑇 and all _ ∈ R.

Equivalently, (𝑋𝑡 )𝑡∈𝑇 is sub-Gaussian if and only if for all 𝑠, 𝑡 ∈ 𝑇 , 𝑋𝑡 − 𝑋𝑠 is
sub-Gaussian with proxy variance 𝜌(𝑡, 𝑠)2. The pseudo-metric 𝜌 is called the canonical
pseudo-metric. For instance, if the variables 𝑋𝑡 are Gaussian, then (𝑋𝑡 )𝑡∈𝑇 is sub-
Gaussian by taking 𝜌(𝑠, 𝑡) =

√︁
Var(𝑋𝑡 − 𝑋𝑠).

Using the characterization of sub-Gaussian variables in terms of tail probability,
the sub-Gaussian property of a process can be interpreted as a Lipschitz property in
probability: indeed, up to constants, the sub-Gaussian property is equivalent to

P( |𝑋𝑡 − 𝑋𝑠 | ≥ 𝑥𝜌(𝑡, 𝑠)) ≤ 𝐶𝑒−𝑥
2/𝐶 .
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The processes (
∑𝑛
𝑖=1 𝜎𝑖𝑡𝑖)𝑡∈𝑇 where 𝑇 ⊆ R𝑛 in the definition of Rademacher and

Gaussian complexities are also sub-Gaussian with respect to the distance induced by the
2-norm on R𝑛 (since Var(𝜎𝑇 𝑡 − 𝜎𝑇 𝑠) ≤ ∥𝑡 − 𝑠∥2

2𝜎
2, with 𝜎2 = 1 for Rademacher).

For fixed 𝑥 = (𝑥1, . . . , 𝑥𝑛), the processes (𝑛−1/2 ∑𝑛
𝑖=1 𝜎𝑖 𝑓 (𝑥𝑖)) 𝑓 ∈F where F ⊆ R𝐸 in

the definition of the empirical complexities are also sub-Gaussian with respect to the
pseudo-distance induced by the ∥ · ∥2,𝑥 pseudo-norm. Hence the results of the previous
section are only particular cases (up to constants for which we do not optimize) of the
general bound for sub-Gaussian processes we now develop.

Definition 28 (Separable Process). Let (𝑇, 𝜌) be a pseudo-metric space. A stochastic
process (𝑋𝑡 )𝑡∈𝑇 on (Ω,F , 𝑃) is said to be separable if there exists a countable dense
subset 𝑆 ⊆ 𝑇 and Ω0 ⊆ Ω with 𝑃(Ω0) = 1 such that for all 𝑡 ∈ 𝑇 and all 𝜔 ∈ Ω0, there
exists a sequence (𝑠𝑛)𝑛∈N in 𝑆 for which 𝑠𝑛 → 𝑡 and 𝑋𝑠𝑛 (𝜔) → 𝑋𝑡 (𝜔).

A separable process (𝑋𝑡 )𝑡∈𝑇 is thus such that each sample path 𝑡 ↦→ 𝑋𝑡 (𝜔) is controlled
by its behavior on a fixed countable subset of 𝑇 . The definition itself imposes the space
(𝑇, 𝜌) to be separable (as 𝑇 is supposed to be the sequential closure of 𝑆). Many
common processes are separable: for instance, if (𝑇, 𝜌) is separable and (𝑋𝑡 )𝑡∈𝑇 has
a.s. continuous sample path, then (𝑋𝑡 )𝑡∈𝑇 is separable. However, not all: for instance,
𝑋𝑡 (𝜔) = 1{𝑡=𝜔} (𝜔, 𝑡) with 𝑇 = Ω = [0, 1] is not separable. Separability also ensures
the measurability of sup𝑡∈𝑇 𝑋𝑡 since under separability sup𝑡∈𝑇 𝑋𝑡 = sup𝑠∈𝑆 𝑋𝑠 a.s. (see
section on "measurability woes").

Theorem 29 (Sub-Gaussian Dudley’s Entropy Integral Bound). Let (𝑇, 𝜌) be a
pseudo-metric space and (𝑋𝑡 )𝑡∈𝑇 a separable sub-Gaussian process with respect to 𝜌.
Let 𝐷 = sup𝑠,𝑡 𝜌(𝑠, 𝑡). Then for all Y ∈ [0, 𝐷],

E

(
sup
𝑠,𝑡∈𝑇

(𝑋𝑡 − 𝑋𝑠)
)
≤ 2E

(
sup

𝑠′ ,𝑡 ′∈𝑇: 𝜌(𝑠′ ,𝑡 ′ )≤Y
(𝑋𝑡 ′ − 𝑋𝑠′)

)
+ 16

∫ 𝐷

𝛿/4

√︁
𝑁 (𝑇, 𝜌, 𝜏) 𝑑𝜏.

Proof. If sup𝑠,𝑡 𝜌(𝑠, 𝑡) = +∞, then the inequality is trivially true (since in this case
𝑁 (𝑇, 𝜌, Y) = +∞ for all Y). For sup𝑠,𝑡 𝜌(𝑠, 𝑡) < +∞, chaining argument: see T.5.22. in
Wainwright HDS p.140. □

5 Symmetrization and empirical processes

The importance of the Rademacher complexity is that it appears naturally when
trying to obtain maximal inequalities for empirical processes (inequalities which are
central to derive uniform convergence results). The connection comes from what is
known as symmetrization. The idea is that for any 𝑓 ∈ F , the random variable
1
𝑛

∑𝑛
𝑖=1 𝜎𝑖 𝑓 (𝑋𝑖) (where 𝜎1, . . . , 𝜎𝑛 are i.i.d. Rademacher, independent of 𝑋1, . . . , 𝑋𝑛)

is simply a symmetrized (or randomized) version of the random variable (P𝑛 − P) 𝑓 :=
1
𝑛

∑𝑛
𝑖=1( 𝑓 (𝑋𝑖) − E P( 𝑓 (𝑋𝑖)). (Note that both variables have mean zero.) As one may

expect, it is possible to use one to control the other. In particular, the following result
shows that E P𝑛 (sup 𝑓 ∈F (P𝑛 − P) 𝑓 ) (that is, the average worst-case deviation of the mean
from the sample average) is intimately related to the Rademacher complexity RadP,𝑛 (F ).
Given the interpretation of the Rademacher complexity as a measure of the size of F ,
this result exemplifies the idea that the behavior of stochastic processes indexed by infinite
sets is directly related to the size of the index sets.
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Lemma 30 (Symmetrization Inequalities). Let 𝑋1, . . . , 𝑋𝑛 be independent random el-
ements where 𝑋𝑖 = (𝑋𝑖,𝑡 )𝑡∈𝑇 for some index set 𝑇 and some real random variables 𝑋𝑖,𝑡 .
Assume that 𝐸 (𝑋𝑖,𝑡 ) = 0 for all 𝑖 = 1, . . . , 𝑛 and all 𝑡 ∈ 𝑇 . Let 𝜎1, . . . , 𝜎𝑛 be independent
Rademacher variables independent of 𝑋1, . . . , 𝑋𝑛. Then

1
2
E

(
sup
𝑡∈𝑇

����� 𝑛∑︁
𝑖=1

𝜎𝑖𝑋𝑖,𝑡

�����
)
≤ E

(
sup
𝑡∈𝑇

����� 𝑛∑︁
𝑖=1

𝑋𝑖,𝑡

�����
)
≤ 2E

(
sup
𝑡∈𝑇

����� 𝑛∑︁
𝑖=1

𝜎𝑖𝑋𝑖,𝑡

�����
)
,

and

E

(
sup
𝑡∈𝑇

𝑛∑︁
𝑖=1

𝑋𝑖,𝑡

)
≤ 2E

(
sup
𝑡∈𝑇

𝑛∑︁
𝑖=1

𝜎𝑖𝑋𝑖,𝑡

)
.

Proof. L.11.4. in BLM CI p.322. The idea is to introduce a "ghost sample" 𝑌1, . . . , 𝑌𝑛
which is an independent copy of 𝑋1, . . . , 𝑋𝑛 and to note that the random elements 𝑋𝑖 −𝑌𝑖
are symmetric and distributed as 𝜎𝑖 (𝑋𝑖 − 𝑌𝑖). □

Corollary 31 (Rademacher Symmetrization Bound). Let 𝑋1, . . . , 𝑋𝑛 be i.i.d. random
variables in 𝐸 with distribution P. Let F ⊆ R𝐸 be a class of integrable functions (with
respect to P) and F ∗ = { 𝑓 − E 𝑓 : 𝑓 ∈ F }. Then

1
2

RadP,𝑛 (F ∗) ≤ E P𝑛
(

sup
𝑓 ∈F

��(P𝑛 − P) 𝑓 ��) ≤ 2RadP,𝑛 (F ),

and
E P𝑛

(
sup
𝑓 ∈F

(
(P𝑛 − P) 𝑓

) )
≤ 2RadP,𝑛 (F ).

Proof. Application of last result with (𝑋𝑖,𝑡 )𝑡∈𝑇 = ( 𝑓 (𝑋𝑖)) 𝑓 ∈F and rough bounding for
non-centered variables in the right hand-side inequalities. First inequalities: P.4.11. in
Wainwright HDS p.107. Second inequality: L.7.4. in van Handel APC550 p.201. □

It is possible to derive probabilistic (instead of moment) versions of these results.
In any case, bounding the Rademacher complexity of F then directly yields maximal

inequalities for the processes ((P𝑛 − P) 𝑓 ) 𝑓 ∈F .
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