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1 Motivation for the minimax paradigm

1. Why minimax? Given a statistical problem with distributions indexed by a class
F , we want to find "good" decision rules among all possible decision rules 𝐷. For this,
we consider a loss function (e.g., a distance between the estimator 𝑓 and the parameter
𝑓0 ∈ F to be estimated in the case of estimation) and a risk function defined as the
expected loss. (Both are function of the decision rule and the parameter). The general
idea is to design or select decision rules that make the risk as small as possible. But
since the "true parameter" 𝑓0 is unknown (see also argument against superefficiency as
in Pollard minimax notes or Johnstone S.6.5. p.176), risk cannot be used pointwise at
𝑓 to evaluate the quality of a given decision rule (if the "true parameter" was known,
pointwise optimization would be degenerate since taking 𝑓 = 𝑓0 a.s. would yield zero
risk). Hence, we would like to find a decision rule that minimizes risk uniformly over
the parameter space F (or some neighborhood in it). Unfortunately, this is generally
impossible (even when F is finite-dimensional). Two ways to remove the uniform nature
of the problem are often considered (independently): 1. minimizing over 𝐷 an average
of risk taken over an a priori distribution over F (Bayesian approach); 2. minimizing
over 𝐷 the supremum over F of the risk (minimax approach). (It is also possible as it
happens often in finite-dimensional settings to further simplify the problem by reducing
the number |𝐷 | of decision rules imposing some constraints on them). The principle of
minimax is thus to simplify the optimality problem by reducing it to the selection of the
best decision rule in the worst case scenario. (It should be clear that the parameter 𝑓𝑑 ∈ 𝐹
defining the worst case scenario for a given decision rule 𝑑 may differ for another decision
rule 𝑑′. To find the minimax decision rule, the algorithm would be: for each decision
rule 𝑑, find the parameter 𝑓𝑑 that minimizes the maximum risk of 𝑑, and then select the
decision rule with minimum maximum risk. A minimax rule is minimax independently
of the value of the "true parameter" 𝑓0.). One may ask why consider this criterion (and
not any other based on optimization, e.g., maximax): first, minimax is attractive from
a risk management perspective as selecting the minimax decision rule provides minimal
guarantees for any risk-related properties of this decision rule (if we select the minimax
decision rule, then we know that it will always achieve lower risk than its worst case risk,
and this upper limit in terms of bad performance is the lowest among other decision rules);
secondly, it is a simple enough problem to be "solved". (See decision-theory for other
possible criteria). A natural limitation of the minimax criterion is that it says nothing
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about what happens for better scenari: for them, the minimax decision rule could perform
much worse than another decision rules.

2. Why only minimax for nonparametric problem (and not Bayesian)? For
infinite-dimensional parameter space F , there is in general no natural a priori distributions
(see Nemirovsky p.6).

3. Why upper bounds and lower bounds? In general, it is not possible to exactly
compute the maximum risk of the minimax decision rule (also known as the minimax
risk), hence the need for upper and lower bounds. Upper and lower bounds do not say
anything more than the minimax risk could say (in particular, about the exact performance
of any decision rule outside of its worst case scenario). If we could easily compute the
minimax risk, we would do it, but we generally cannot. For a given sample size 𝑛,
the objective is then to upper and lower bound the minimax risk by functions of 𝑛 only
differing by some constant. If we can do so, then we approximately know the minimax
risk and it is then simple to design or select decision rules based on their maximum risk
(as we can now say which one is approximately minimax and which one is not).

2 Minimax risk and general reduction scheme

We consider estimation of a parameter 𝑓0 in some class F where the loss function
is directly expressed through some metric 𝜌. That is, we have some Borel probability
measures {P 𝑓 : 𝑓 ∈ F } on a measurable space (𝐸, E) and the risk of an estimator 𝑓𝑛 of
𝑓0 is given by

𝑅( 𝑓𝑛, 𝑓0) = E P 𝑓0 (𝜌( 𝑓𝑛, 𝑓0))).

(It is implicitly assumed that we have a sample of size 𝑛 i.i.d. according to 𝑓0 so that the
expectation is taken with respect to the 𝑛-product distribution P⊗𝑛

𝑓0
). The minimax risk

𝑅𝑛 is defined as the maximum risk of the minimax rule, that is,

𝑅𝑛 := inf
𝑓𝑛

sup
𝑓 ∈F
E P 𝑓 (𝜌( 𝑓𝑛, 𝑓 ))) = sup

𝑓 ∈F
E P 𝑓 (𝜌(𝜙𝑛, 𝑓 ))

where 𝜙𝑛 is the minimax rule. The primary objective is to find upper bounds 𝑈𝑛 and
lower bounds 𝐿𝑛 on 𝑅𝑛, that is,

𝐿𝑛 ≤ 𝑅𝑛 ≤ 𝑈𝑛.

We do not want any such bounds, but bounds as close as possible to one another. In
practice, we want to find a constant-factor approximation of the minimax risk, that is,
upper and lower bounds expressible as the same function of 𝑛 but differing only by a
constant. In other words, we want to find a positive sequence (𝜓𝑛) converging to 0 (often,
some power functions) such that

𝐿𝑛 = 𝑐𝜓𝑛 ≤ 𝑅𝑛 ≤ 𝐶𝜓𝑛 = 𝑈𝑛,

where 𝑐, 𝐶 > 0 are some universal constants. In this case, we write 𝑅𝑛 ≍ 𝜓𝑛 and call
𝜓𝑛 a minimax rate of convergence (which is unique up to multiplicative constants).
An estimator 𝑓𝑛 of 𝑓0 with maximum risk 𝑟 𝑓𝑛 := sup 𝑓 ∈F E P 𝑓 (𝜌( 𝑓𝑛, 𝑓 )) is said to be
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(asymptotically) (minimax) efficient if

lim
𝑛→∞

𝑟 𝑓𝑛

𝑅𝑛
= 1.

Finding an upper bound is relatively easy since 𝑅𝑛 is bounded by the maximum risk
of any estimator 𝑓𝑛 of 𝑓0. That is,

𝑅𝑛 = inf
𝑓𝑛

sup
𝑓 ∈F
E P 𝑓 (𝜌( 𝑓𝑛, 𝑓 ))) ≤ sup

𝑓 ∈F
E P 𝑓 (𝜌( 𝑓𝑛, 𝑓 )) = 𝑈𝑛

for any estimator 𝑓𝑛 of 𝑓0.
Finding a lower bounds requires more work, but there exists a general "reduction

scheme" to find them. The reduction consists in discretizing F (in a not too patchy way),
as optimization over discrete sets is generally more manageable than over uncountable
ones. Finding minimax lower bounds then amounts to lower bounding the probability of
error in some testing problem. The reduction from estimation to testing proceeds as
follows:

1. Reduction to a probability bound: using Markov’s inequality, we have for all 𝑠 > 0
that

E (𝜌( 𝑓𝑛, 𝑓 )) ≥ 𝑠P(𝜌( 𝑓𝑛, 𝑓 ) ≥ 𝑠),

hence to lower bound 𝑅𝑛, it suffices to lower bound any of the minimax probabilities
given for any 𝑠 > 0 by

inf
𝑓𝑛

sup
𝑓 ∈F
P 𝑓 (𝜌( 𝑓𝑛, 𝑓 ) ≥ 𝑠).

2. Discretization of F : for any finite subset F𝑀 = { 𝑓1, . . . , 𝑓𝑀 } of F , we naturally
have that

inf
𝑓𝑛

sup
𝑓 ∈F
P 𝑓 (𝜌( 𝑓𝑛, 𝑓 ) ≥ 𝑠) ≥ inf

𝑓𝑛

max
𝑓 ∈{ 𝑓1,..., 𝑓𝑀 }

P 𝑓 (𝜌( 𝑓𝑛, 𝑓 ) ≥ 𝑠).

Intuitively, to make the lower bounds as large (i.e., good) as possible, we need the
discretization to be a good approximation of F . (This already indicates that the choice of
F𝑀 is of great importance for the tightness of the bound. As shown in the next step, we
should focus on 2𝑠-separated sets for which the choice of 𝑠 becomes crucial).

3. Choice of 2𝑠-separated hypotheses: if 𝜌( 𝑓𝑖 , 𝑓 𝑗) ≥ 2𝑠 for all 𝑖, 𝑗 = 1, . . . , 𝑀 , 𝑖 ≠ 𝑗

(i.e., F𝑀 is a 2𝑠-separated set), then for any estimator 𝑓𝑛,

P 𝑓𝑖 (𝜌( 𝑓𝑛, 𝑓𝑖) ≥ 𝑠) ≥ P 𝑓𝑖 (𝜓∗ ≠ 𝑖)

where𝜓∗ : 𝐸 → {1, . . . , 𝑀} is the minimum distance (multiple deterministic) test defined
by

𝜓∗ = arg min
𝑖∈{1,...,𝑀 }

𝜌( 𝑓𝑛, 𝑓𝑖).

This follows directly from the triangle inequality. Thereafter, the problem reduces to
lower bounding the minimax probability of error

𝑝𝑒F𝑀
(𝑠) := inf

𝜓
max

𝑖∈{1,...,𝑀 }
P 𝑓𝑖 (𝜓 ≠ 𝑖)

where the infimum runs over all tests in {1, . . . , 𝑀} for appropriately selected 2𝑠-separated
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hypotheses F𝑀 = { 𝑓1, . . . , 𝑓𝑀 }. Indeed, from (1) and (2), we have

𝑅𝑛 ≥ 𝑠𝑝𝑒F𝑀
(𝑠).

The bound above, which we want as large as possible, is the product of 𝑠 and the
minimax probability of error which depends on 𝑠. For 𝑠 fixed, it is often natural to
consider a maximum 2𝑠-packing for F𝑀 : indeed, we want the minimax probability of
error 𝑝𝑒F𝑀

(𝑠) to be as large as possible; for this we want the testing problem to be more
difficult, that is, we want the distributions to be closer to one another, which happens
under the separation condition only when there are more of them until no more can be
added. The crux of the problem then becomes the choice of 𝑠 for which we face a clear
trade-off: when 𝑠 increases, the minimax probability of error generally decreases (indeed,
if 𝑠 increases, distributions are more separated, and the testing problem becomes easier);
the choice of 𝑠 (and hence the minimax rate) will then be dictated by the geometry of F .

3 Le Cam’s method

The general method developed above applies in the particular case of 𝑀 = 2, in which
case, estimation reduces to binary hypothesis testing. The connection between binary
testing and total variation allows us to derive lower bounds for the minimax risk. The
method generalizes by considering two sets of distributions sufficiently separated.

The method relies on an impossibility result for binary testing due to Le Cam which
lower bounds the (sum of) probabilities of error by the total variation distance between
the two tested distributions. The intuition of the result is simple: if the distribution are
close (i.e., their total variation is small), testing is difficult, and errors are likely large.

Proposition 1. Let P1 and P2 be probability distributions on (𝐸, E). For any test 𝜓 : 𝐸 →
{1, 2}, it holds that

P1(𝜓 ≠ 1) + P2(𝜓 ≠ 2) ≥ 1 − TV(P1, P2)

with equality if 𝜓(𝑥) = 1{𝑝2(𝑥) ≥ 𝑝1(𝑥)}.

Proof. Let 𝐴 = {𝑥 ∈ 𝐸 : 𝜓(𝑥) = 1}. Then P1(𝐴𝑐) + P2(𝐴) = 1 − (P1(𝐴) − P2(𝐴)) ≥
1 − sup𝐴 |P1(𝐴) − P2(𝐴) |. Equality follows from the equivalent formulations of the total
variation distance. □

This is equivalently formulated by saying that the best binary test (in terms of sum of
error probabilities) has sum of error probabilities equal to 1 − TV(P1, P2).

Corollary 2. Let P1 and P2 be probability distributions on (𝐸, E). Then

inf
𝜓
[P1(𝜓 ≠ 1) + P2(𝜓 ≠ 2)] = 1 − TV(P1, P2)

where the infimum runs over all test 𝜓 : 𝐸 → {1, 2}.

Proof. Since any test 𝜓 is uniquely defined by 𝐴 = {𝑥 ∈ 𝐸 : 𝜓(𝑥) = 1}, the infimum
over all binary tests can be taken over all subsets of 𝐸 . Then taking the infimum over
P1(𝐴𝑐) + P2(𝐴) = 1 − (P1(𝐴) − P2(𝐴)) yields the result. □
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The connection to the reduction scheme of last section is then straighforward. By
lower bounding the maximum over the distributions by their average (which always holds),
we get

𝑝𝑒{P 𝑓1 ,P 𝑓2 }
= inf

𝜓
max
𝑖∈{1,2}

P 𝑓𝑖 (𝜓 ≠ 𝑖)

≥ inf
𝜓

1
2
[P 𝑓1 (𝜓 ≠ 1) + P 𝑓2 (𝜓 ≠ 2)]

=
1
2
− 1

2
TV(P 𝑓1 , P 𝑓2).

As everything we did, this holds in particular for 𝑛-product distributions, that is,

𝑝𝑒{P⊗𝑛
𝑓1
,P⊗𝑛

𝑓2
} =

1
2
− 1

2
TV(P⊗𝑛

𝑓1
, P⊗𝑛

𝑓2
).

Finally, if 𝑓1 and 𝑓2 are 2𝑠-separated, then

𝑅𝑛 ≥ 𝑠

(
1
2
− 1

2
TV

(
P⊗𝑛
𝑓1
, P⊗𝑛

𝑓2

) )
.

The objective is then to find distributions P 𝑓1 and P 𝑓2 such that 𝜌( 𝑓1, 𝑓2) is large (allowing
𝑠 to be as large as possible) and TV(P⊗𝑛

𝑓1
, P⊗𝑛

𝑓2
) is small. We illustrate this in examples.

Example 3 (Bernoulli Mean Estimation). Consider estimating the mean 𝜃 ∈ [−1, 1] of a
{±1}-Bernoulli random variable under the squared error loss 𝜌(𝜃, 𝜃) = (𝜃 − 𝜃)2. Denote
Ber( [−1, 1]) the family of all {±1}-Bernoulli distributions. Fix 𝛿 ∈ (0, 1] and for any
𝑎 ∈ [0, 1/𝛿], define P𝑎 ∈ Ber( [−1, 1]) by P𝑎 (𝑋 = 1) = (1 + 𝑎𝛿)/2 and P𝑎 (𝑋 = −1) =
(1− 𝑎𝛿)/2. Then the mean of P𝑎 is 𝜃 (P𝑎) = 𝑎𝛿. We have 𝜌(𝜃 (P−1), 𝜃 (P1)) = 4𝛿2. Then,
via Le Cam’s method, the minimax risk for the problem is bounded by

𝑅𝑛 ≥ 𝛿2(1 − TV(P⊗𝑛−1 , P
⊗𝑛
1 ))

We now bound TV(P⊗𝑛−1 , P
⊗𝑛
1 ) in terms of 𝛿 and 𝑛. By Pinsker’s inequality and the

tensorization identity for KL-divergence, we have

TV(P⊗𝑛−1 , P
⊗𝑛
1 )2 ≤ 1

2
𝐷𝐾𝐿 (P⊗𝑛−1 ∥P

⊗𝑛
1 ) = 𝑛

2
𝐷𝐾𝐿 (P−1∥P1) =

𝑛

2
𝛿 log

1 + 𝛿
1 − 𝛿 .

Since 𝛿 log 1+𝛿
1−𝛿 ≤ 3𝛿2 for 𝛿 ∈ [0, 1/2], we have TV(P⊗𝑛−1 , P

⊗𝑛
1 ) ≤ 𝛿

√︁
3𝑛/2 for 𝛿 ≤ 1/2.

By taking 𝛿 = 1/
√

6𝑛, this guarantees that TV(P⊗𝑛−1 , P
⊗𝑛
1 ) ≤ 1

2 , and so

𝑅𝑛 ≥ 1
12𝑛

.

This is the standard rate of convergence (1/𝑛 in squared error) for the parametric estima-
tion. The sample mean 𝑛−1 ∑𝑛

𝑖=1 𝑋𝑖 for the above problem achieves mean-squared error
(1 − 𝜃2)/𝑛.

Reference. E.7.7. in Duchi’s 311IT notes p.138.

Example 4 (Gaussian Location Model). Consider the problem of estimating the mean
𝜃 ∈ R of a normal random variable 𝑁 (𝜃, 𝜎2) with known variance 𝜎2 > 0 under either
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the squared error loss 𝜌(𝜃, 𝜃) = (𝜃 − 𝜃)2 or the absolute error loss 𝜈(𝜃, 𝜃) = |𝜃 − 𝜃 |.
Consider the normal distributions P0 ∼ 𝑁 (0, 𝜎2) and P2𝛿 ∼ 𝑁 (2𝛿, 𝜎2) for some 𝛿 > 0.
By second-moment bounding Gaussian r.v.s, we have

TV(P𝑛2𝛿 , P
𝑛
0 ) ≤

1
4

(
𝑒4𝑛𝛿2/𝜎2 − 1

)
.

Since 2𝛿 and 0 are 4𝛿2-separated with respect to 𝜌 and 2𝛿-separated with respect to 𝜈, we
have by taking 𝛿 = 𝜎/2

√
𝑛 that

𝑅𝑛 (𝜌) ≥ 𝛿2
(
1 − 1

2
√
𝑒 − 1

)
≥ 𝛿2

3
=

1
12
𝜎2

𝑛
,

and

𝑅𝑛 (𝜈) ≥
𝛿

2

(
1 − 1

2
√
𝑒 − 1

)
≥ 𝛿2

6
=

1
12

𝜎
√
𝑛
.

This is again an example of standard rates for parametric estimation. The sample mean
for the above problem achieves respective risks 𝜎2/𝑛 and

√
2𝜎/

√
𝜋𝑛.

Reference. E.15.4. in Wainwright HDS p.492.

Example 5 (Normal Nonparametric Regression (at a point)). Consider the estimation of
the function 𝑚 : [0, 1] → R defined via

𝑌𝑖 = 𝑚(𝑋𝑖) + 𝜀𝑖

where we observe (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛) with 𝑋𝑖 ∼ 𝑈 [0, 1] (or, equivalently, 𝑋𝑖 is deter-
ministic in [0, 1]) but not 𝜀𝑖 ∼ 𝑁 (0, 𝜎2). Assume that

𝑚 ∈ 𝑀 =

{
𝑚 : [0, 1] → R : |𝑚(𝑦) − 𝑚(𝑥) | ≤ 𝐿 |𝑦 − 𝑥 | for all 𝑥, 𝑦 ∈ [0, 1]

}
.

The set P of distributions for the problem thus comprises all distributions of the form
𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦 |𝑥) = 𝜙(𝑦 −𝑚(𝑥)) where 𝑚 ∈ 𝑀 . We want to estimate 𝑚(𝑥). Without
loss of generality, take 𝑥 = 0, so the parameter of interest is 𝜃 = 𝑚(0). Consider the
absolute error loss 𝜌(𝜃0, 𝜃1) = |𝜃1 − 𝜃0 |. Define 𝑚0(𝑥) = 0 for all 𝑥. Let 0 ≥ 𝜀 ≥ 1 and
define

𝑚1(𝑥) =
{
𝐿 (𝜀 − 𝑥) if 0 ≥ 𝑥 ≥ 𝜀,

0 if 𝑥 > 𝜀.

Then 𝑚0, 𝑚1 ∈ 𝑀 and 𝜌(𝑚0(0), 𝑚1(0)) = 𝐿𝜀. Consider the distributions P0, P1 ∈ P

respectively associated with 𝑚0, 𝑚1 ∈ 𝑀 . Their KL-divergence is then given by

𝐷𝐾𝐿 (P0∥P1) =
∬

𝑝0(𝑥, 𝑦) log
𝑝0(𝑥, 𝑦)
𝑝1(𝑥, 𝑦)

𝑑𝑦 𝑑𝑥

=

∬
𝜙(𝑦) log

𝜙(𝑦)
𝜙(𝑦 − 𝑚1(𝑥))

𝑑𝑦 𝑑𝑥

=

∫ 𝜀

0
𝐷𝐾𝐿 (𝑁 (0, 1), 𝑁 (𝑚1(𝑥), 1)) 𝑑𝑥.
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Since 𝐷𝐾𝐿 (𝑁 (𝜇1, 1), 𝑁 (𝜇2, 1)) = (𝜇1 − 𝜇2)2/2, we have

𝐷𝐾𝐿 (P0∥P1) =
𝐿2

2

∫ 𝜀

0
(𝜀 − 𝑥)2 𝑑𝑥 =

𝐿2𝜀3

6
.

Then by Pinkser’s inequality,

TV(P𝑛0 , P
𝑛
1 )

2 ≤ 𝑛𝐿2𝜀3

12
.

By taking 𝜀 = ( 3
𝑛𝐿2 )1/3, we have TV(P0, P1) ≤ 1/2, and thus

𝑅𝑛 ≥ 𝐿

4

(
3
𝑛𝐿2

)1/3
=

(
𝑐

𝑛

)1/3
.

The regression histogram 𝑚̂(0) for the above problem has risk (𝐶/𝑛)1/3. This proves that
𝑅𝑛 ≍ 𝑛−1/3. For the 𝑑-dimensional problem, we find similarly that 𝑅𝑛 ≍ 𝑛−1/(2+𝑑) . For
the squared error loss, we find 𝑅𝑛 ≍ 𝑛−2/(2+𝑑) .

Reference. E.8. in Larry Wasserman’s notes on Minimax or S.5. in Tsybakov INE p.91.

4 Fano’s method

Fano’s method for minimax lower bounds was developed by R. Z. Has’ininskii. It uses
the same reduction scheme introduced initially, but relies directly on multiple hypotheses
(i.e., 𝑀 ≥ 2), whereas Le Cam’s method was inherently based on binary hypotheses
(i.e. 𝑀 = 2). For this, it exploits Fano’s inequality which provides impossibility result
for multiple hypothesis testing in terms of mutual information. Fano’s method generally
delivers tighter bounds and bounds where Le Cam’s method fails (e.g., with 𝐿2 distance
𝜌( 𝑓 , 𝑔) =

∫
( 𝑓 − 𝑔)2).

Proposition 6 (Fano’s Inequality). For any Markov chain 𝑉 → 𝑋 → 𝑉̂ taking values in
V , it holds that

ℎ2(P(𝑉̂ ≠ 𝑉)) + P(𝑉̂ ≠ 𝑉) log( |V | − 1) ≥ 𝐻 (𝑉 |𝑉̂),

where ℎ2(𝑝) = −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝) is the binary entropy function and 𝐻 (𝑉 |𝑉̂)
is the entropy of𝑉 conditioned on 𝑉̂ . In particular, if𝑉 is uniform on V , then it holds that

P(𝑉̂ ≠ 𝑉) ≥ 1 − 𝐼 (𝑉 ; 𝑋) + log 2
log( |V |) ,

where 𝐼 (𝑉 ; 𝑋) is the mutual information between 𝑉 and 𝑋 .

Proof. P.2.19. and C.2.20. in Duchi IT notes p.27-28. □

This applies in particular when 𝑉̂ = 𝜓(𝑋) for any testing function 𝜓 : 𝐸 → V . More-
over, in the uniform setting, the mutual information takes the equivalent representation

𝐼 (𝑉 ; 𝑋) = 1
|V |

∑︁
𝑣∈V

KL(P𝑣 ∥P),
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where P = 1
|V |

∑
𝑣∈V P𝑣 (the result holds more genrally for any distribution Q dominating

P𝑣 for all 𝑣 ∈ V). We thus get the following corollary which bounds the average probability
of error (which can then be used to bound the max probability of error, and hence the
minimax probability of error, and thus the minimax risk).

Corollary 7. Let {P1, . . . , P𝑀 } be Borel probability measures on (𝐸, E). For any test
function 𝜓 : 𝐸 → {1, . . . , 𝑀} and any Borel probability measure Q such that P ≪ Q for
all 𝑖 = 1, . . . , 𝑀 , it holds that

1
𝑀

𝑀∑︁
𝑖=1

P𝑖 (𝜓 ≠ 𝑖) ≥ 1 −
1
𝑀

∑𝑀
𝑖=1 KL(P𝑖 ∥Q) + log 2

log𝑀
.

Proof. This follows directly from Fano’s inequality. See L.28. in Larry minimax p.28 or
T.3.1. in Giraud HDS p.56. □

As mentioned, this holds in particular for Q = P. Since (we can always lower bound
a max by an average – see p.113 in Tsybakov), we finally have that

𝑝𝑒F𝑀
= inf

𝜓
max

𝑖∈{1,...,𝑀 }
P 𝑓𝑖 (𝜓 ≠ 𝑖)

≥ inf
𝜓

1
𝑀

𝑀∑︁
𝑖=1

P 𝑓𝑖 (𝜓 ≠ 𝑖) (=: 𝑝𝑒F𝑀
)

≥ 1 −
1
𝑀

∑𝑀
𝑖=1 KL(P 𝑓𝑖 ∥P) + log 2

log𝑀
.

The next objective is to upper bound 𝑀−1 ∑𝑀
𝑖=1 KL(P 𝑓𝑖 ∥P). We have that

1
𝑀

𝑀∑︁
𝑖=1

KL(P 𝑓𝑖 ∥P) ≤
1
𝑀2

𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1

KL(P 𝑓𝑖 ∥P 𝑓 𝑗 )

≤ max
𝑖≠ 𝑗

KL(P 𝑓𝑖 ∥P 𝑓 𝑗 ).

Thereafter, applying the reduction scheme (and using the fact that KL(P⊗𝑛
𝑓𝑖
∥P⊗𝑛

𝑓 𝑗
) =

𝑛KL(P 𝑓𝑖 ∥P 𝑓 𝑗 )), we can directly lower bound 𝑅𝑛 in terms of max𝑖≠ 𝑗 KL(P 𝑓𝑖 ∥P 𝑓 𝑗 ) when-
ever F𝑀 is 2𝑠-separated. That is, if F𝑀 is 2𝑠-separated, then

𝑅𝑛 ≥ 𝑠

(
1 −

𝑛max𝑖≠ 𝑗 KL(P 𝑓𝑖 ∥P 𝑓 𝑗 ) + log 2
log𝑀

)
.

Then, as in Le Cam’s method, the objective is to find F𝑀 such that all the 𝑓𝑖 are far apart
in terms of 𝜌, but all the P 𝑓𝑖 are close enough in terms of Kullback–Leibner divergence.
To construct such families, we will often use scaled packing of some fixed sets. The
two following results will often be used: bounds on the packing number of the unit ball
in R𝑑 with respect to any norm-induced distance; exponentially large packings of the
𝑑-dimensional hypercube with respect to the Hamming distance.

Proposition 8. Let ∥ · ∥ be any norm on R𝑑 and 𝐵∥ · ∥ the corresponding unit ball. Then(
1
𝛿

)𝑑
≤ 𝑁 (𝐵∥ · ∥ , ∥ · ∥, 𝛿) ≤ pack(𝐵∥ · ∥ , ∥ · ∥, 𝛿) ≤ 𝑁 (𝐵∥ · ∥ , ∥ · ∥, 𝛿/2) ≤

(
1 + 4

𝛿

)𝑑
.
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Proof. L.5.4. and L.5.6. in Duchi IT notes. □

Proposition 9 (Gilbert–Varshamov Bound). Let 𝑑 ≥ 1. There is a subset V of the
𝑑-dimensional hypercube H𝑑 = {−1, 1}𝑑 with cardinality |V | ≥ 𝑒𝑑/8 such that

∥𝑣 − 𝑣′∥1 =

𝑑∑︁
𝑖=1

1{𝑣𝑖 ≠ 𝑣′𝑖} ≥
𝑑

4

for all 𝑣 ≠ 𝑣′ with 𝑣, 𝑣′ ∈ V .

Proof. L.7.5. in Duchi IT notes. □

Example 10 (Gaussian Location Model (bis repetita)). Consider the problem of estimat-
ing the mean 𝜃 in the 𝑑-dimensional Gaussian location family N𝑑 = {𝑁𝑑 (𝜃, 𝜎2𝐼𝑑) : 𝜃 ∈
R𝑑} under the squared error loss 𝜌(𝜃, 𝜃) = ∥𝜃 − 𝜃∥2

2. We now construct an appropriate
family of probability measures by building a "local packing" of Θ = R𝑑 . Consider V a
1/2-packing of the unit ball in R𝑑 with respect to the 𝑙2-norm. By standard results, the
cardinality of V is at least 2𝑑 . Fix 𝛿 > 0 and for each 𝑣 ∈ V , define 𝜃𝑣 = 𝛿𝑣 ∈ R𝑑 . Then
we have

∥𝜃𝑣 − 𝜃𝑣′ ∥2 = 𝛿∥𝑣 − 𝑣′∥2 ≥ 𝛿

2
for each distinct 𝑣, 𝑣′ ∈ V . That is, {𝜃𝑣 : 𝑣 ∈ V} is 𝛿2/4-separated with respect to 𝜌.
Moreover, ∥𝜃𝑣 − 𝜃𝑣′ ∥2 ≤ 2𝛿. Define the distribution P𝑣 ∼ 𝑁 (𝜃𝑣 , 𝜎2𝐼𝑑) ∈ N𝑑 . Since the
KL-divergence between normal distributions with identical covariance is

𝐷𝐾𝐿 (𝑁 (𝜃1, Σ)∥𝑁 (𝜃2, Σ)) =
1
2
(𝜃1 − 𝜃2)𝑇Σ−1(𝜃1 − 𝜃2),

we have that

𝐷𝐾𝐿 (P𝑛𝑣 ∥P𝑛𝑣′) = 𝑛𝐷𝐾𝐿 (𝑁 (𝛿𝑣, 𝜎2𝐼𝑑)∥𝑁 (𝛿𝑣′, 𝜎2𝐼𝑑)) = 𝑛
𝛿2

2𝜎2 ∥𝑣 − 𝑣
′∥2

2.

Since ∥𝑣 − 𝑣′∥2 ≤ 2, we have 𝐷𝐾𝐿 (P𝑛𝑣 ∥P𝑛𝑣′) ≤ 2𝑛𝛿2/𝜎2. By taking 𝛿2 = 𝑑𝜎2 log 2/8𝑛,
we find for 𝑑 ≥ 2 that

𝑅𝑛 ≥ 𝛿2

16

(
1 − 2𝑛𝛿2𝜎−2 + log 2

𝑑 log 2

)
=
𝛿2

16

(
1 − 1

𝑑
− 1

4

)
≥ 𝑑𝜎2 log 2

128𝑛
1
4
= 𝑐

𝑑𝜎2

𝑛
.

The sample mean for the above problem achieves risk 𝐶𝑑𝜎2/𝑛, hence 𝑅𝑛 ≍ 𝑑𝜎2/𝑛.
Reference. E.7.11. in Duchi IT notes. See also Wainwright E.15.13. and Giraud S.3.3.

Example 11 (Fixed Design Normal Linear Regression). Consider estimating 𝜃 ∈ R𝑑 in
the linear regression model

𝑌 = 𝑋𝜃 + 𝜀

where 𝑋 ∈ R𝑛×𝑑 is some fixed matrix and 𝜀 ∼ 𝑁 (0, 𝜎2𝐼𝑛). Consider the squared error
loss 𝜌(𝜃, 𝜃) = ∥𝜃 − 𝜃∥2

2. Let P the family of distributions defined by this model, that is,

P = {𝑁 (𝑋𝜃, 𝜎2𝐼𝑛) : 𝜃 ∈ R𝑑}.

We now construct an appropriate family of probability measures in P by building a "local
packing" of Θ = R𝑑 . In this case, we use the Gilbert–Varshamov bound: it guarantees
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the existence of a packing V of {−1, 1}𝑑 such that |V | ≥ 𝑒𝑑/8 and ∥𝑣 − 𝑣′∥1 ≥ 𝑑/4 for
𝑣 ≠ 𝑣′. Fix 𝛿 > 0 and define 𝜃𝑣 := 𝛿𝑣 ∈ R𝑑 . Then we have for 𝑣 ≠ 𝑣′,

∥𝜃𝑣 − 𝜃𝑣′ ∥2
2 = 𝛿2

𝑑∑︁
𝑗=1

(𝑣 𝑗 − 𝑣′𝑗)2 = 𝛿2∥𝑣 − 𝑣′∥1 ≥ 𝑑𝛿2

4
.

We have

𝐷𝐾𝐿 (𝑁 (𝑋𝜃𝑣 , 𝜎2𝐼𝑛)∥𝑁 (𝑋𝜃𝑣′ , 𝜎2𝐼𝑛)) =
1

2𝜎2 ∥𝑋 (𝜃𝑣 − 𝜃𝑣′)∥
2
2

≤ 𝛿2

2𝜎2 𝛾
2
max(𝑋)∥𝑣 − 𝑣′∥2

2

≤ 𝛿2𝑑

2𝜎2 𝛾
2
max(𝑋)

where 𝛾max(𝑋) denotes the maximal singular value of 𝑋 . By taking 𝛿2 = 𝜎2/16𝛾2
max(𝑋),

then for 𝑑 ≥ 32,

𝑅𝑛 ≥ 𝑑𝛿2

8

(
1 −

𝛿2𝑑𝛾2
max(𝑋)/2𝜎2 + log 2

𝑑/8

)
≥ 𝑑𝛿2

8

(
1 − 1

4
− 1

4

)
=

1
256

𝑑𝜎2

𝛾2
max(𝑋)

.

The rate can be rewritten as 𝑑𝜎2/256𝑛𝛾2
max(𝑛−1/2𝑋). This bound is of the right order in

terms of 𝑑, 𝑛, and 𝜎2 but our bounding through the maximal singular value of 𝑋 makes
the bound not sharp. An exact calculation shows that the minimax value of the problem
is exactly 𝜎2tr((𝑋𝑇𝑋)−1).

Reference. E.7.12 in Duchi or E.15.14. in Wainwright (for a different metric).

Example 12 (Normal Nonparametric Regression under 𝐿2-distance). Consider again the
problem of estimating the function 𝑓 : [0, 1] → R defined via

𝑌𝑖 = 𝑓 (𝑋𝑖) + 𝜀𝑖

where we observe (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛) with 𝑋𝑖 ∼ 𝑈 [0, 1] (or, equivalently, 𝑋 is deter-
ministic in [0, 1]) but do not observe 𝜀𝑖 ∼ 𝑁 (0, 𝜎2). Assume this time that 𝑓 lies in the
Holder class Σ(𝛽, 𝐿) (which comprises L-Lipschitz functions for 𝛽 = 1), that is,

𝑓 ∈ Σ(𝛽, 𝐿) =
{
𝑓 : [0, 1] → R : | 𝑓 (𝑙) (𝑦) − 𝑓 (𝑙) (𝑥) | ≤ 𝐿 |𝑦 − 𝑥 |𝛽−𝑙 for all 𝑥, 𝑦 ∈ [0, 1]

}
where 𝑙 is the greatest integer strictly less than 𝛽. The set P of distributions for the
problem is again composed of all distributions of the form 𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦 |𝑥) =

𝜙(𝑦 − 𝑓 (𝑥)) where 𝑓 ∈ Σ(𝛽, 𝐿). We want to estimate 𝑓 under the integrated squared
error loss (𝐿2-distance) 𝜌2( 𝑓 , 𝑔) =

∫
( 𝑓 − 𝑔)2. We now construct an appropriate family

𝐹 of probability measures in P by building a "local packing" of Σ(𝛽, 𝐿). Fix 𝑐 > 0, and
define 𝑚 = ⌈𝑐𝑛1/(2𝛽+1)⌉. By the Gilbert–Varshamov bound, there exists a packing V of
{−1, 1}𝑚 such that |V | ≥ 𝑒𝑚/8 and ∥𝑣 − 𝑣′∥1 ≥ 𝑚/4 for 𝑣 ≠ 𝑣′. Define

𝐹 =

{
𝑓𝑣 (𝑥) =

𝑚∑︁
𝑗=1

𝑣 𝑗𝜙 𝑗 (𝑥) : 𝑣 ∈ V
}
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where 𝑚 = ⌈𝑐𝑛1/(2𝛽+1)⌉, ℎ = 1/𝑚, 𝜙 𝑗 (𝑥) = 𝐿ℎ𝛽𝐾 ((𝑥 − 𝑥 𝑗)/ℎ), 𝑥 𝑗 = ( 𝑗 − 1/2)/𝑚, and
𝐾 : R→ [0, +∞) is any sufficiently smooth function supported on (−1/2, 1/2) such that
𝐹 ⊆ Σ(𝛽, 𝐿). For any 𝑣 ≠ 𝑣′ in V , we have

𝜌( 𝑓𝑣 , 𝑓𝑣′) =
[ ∫ 1

0

( 𝑚∑︁
𝑗=1

(𝑣 𝑗 − 𝑣′𝑗)𝜙 𝑗 (𝑥)
)2
𝑑𝑥

]1/2

=

[ 𝑚∑︁
𝑗=1

(𝑣 𝑗 − 𝑣′𝑗)2
∫
Δ 𝑗

𝜙2
𝑗 (𝑥) 𝑑𝑥

]1/2

=
√︁
∥𝑣 − 𝑣′∥1𝐿ℎ

𝛽+ 1
2 ∥𝐾 ∥2

≥ 𝑐0ℎ
𝛽

for some 𝑐0 > 0, where Δ 𝑗 = [( 𝑗 − 1)/𝑚, 𝑗/𝑚] for 𝑗 = 1, 2, . . . , 𝑚. The second equality
follows from the fact that 𝐾 ((𝑥 − 𝑥𝑖)/ℎ)𝐾 ((𝑥 − 𝑥 𝑗)/ℎ) = 0 for 𝑖 ≠ 𝑗 . The last inequality
follows by construction, since ∥𝑣−𝑣′∥1 ≥ 𝑚/4. By standard results for the KL-divergence
of normals with same variance, we find that

𝐷𝐾𝐿 (P𝑣 ∥P𝑣′) =
∫ 1

0
𝐷𝐾𝐿 (𝑁 ( 𝑓𝑣 (𝑥), 1), 𝑁 ( 𝑓𝑣′ (𝑥), 1)) 𝑑𝑥

=
1
2

∫ 1

0
( 𝑓𝑣 − 𝑓𝑣′)2 𝑑𝑥

≤ 𝑐1ℎ
2𝛽

for some 𝑐1 > 0. The last inequality follows from the fact that ∥𝑣 − 𝑣′∥1 ≤ 𝑚. By taking
ℎ = 𝑐1/2𝛽𝑐

−1/2𝛽
1 𝑛−1/(2𝛽+1)/32, we find for 𝑚 ≥ 32 that

𝑅𝑛 (𝜌) ≥
𝑐0ℎ

𝛽

2

(
1 − 𝑛𝑐1ℎ

2𝛽 + log 2
𝑚/8

)
≥ 𝑐0ℎ

𝛽

2

(
1 − 1

4
− 1

4

)
≥ 𝑐2𝑛

− 𝛽

2𝛽+1

for some 𝑐2 > 0. Similarly, we directly find that 𝑅𝑛 (𝜈) ≥ 𝑐2𝑛
− 2𝛽

2𝛽+1 for some 𝑐3 > 0 where
𝜈( 𝑓 , 𝑔) =

∫
( 𝑓 − 𝑔)2. It can be shown that there are kernel estimators that achieve these

rates, hence 𝑅𝑛 (𝜌) ≍ 𝑛−𝛽/(2𝛽+1) and 𝑅𝑛 (𝜈) ≍ 𝑛−2𝛽/(2𝛽+1) . A similar calculation in 𝑑
dimensions shows that 𝑅𝑛 (𝜈𝑑) ≍ 𝑛−2𝛽/(2𝛽+𝑑) .

Reference. E.16. in Larry minimax or S.2.6. in Tsybakov INE p.95.

Example 13 (Density Estimation). E.15.15. in Wainwright or S.9.2. in Larry minimax.
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