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1 Motivation for the minimax paradigm

1. Why minimax? Given a statistical problem with distributions indexed by a class
%, we want to find "good" decision rules among all possible decision rules D. For this,
we consider a loss function (e.g., a distance between the estimator f and the parameter
fo € % to be estimated in the case of estimation) and a risk function defined as the
expected loss. (Both are function of the decision rule and the parameter). The general
idea is to design or select decision rules that make the risk as small as possible. But
since the "true parameter" fy is unknown (see also argument against superefficiency as
in Pollard minimax notes or Johnstone S.6.5. p.176), risk cannot be used pointwise at
f to evaluate the quality of a given decision rule (if the "true parameter" was known,
pointwise optimization would be degenerate since taking f = fy a.s. would yield zero
risk). Hence, we would like to find a decision rule that minimizes risk uniformly over
the parameter space .# (or some neighborhood in it). Unfortunately, this is generally
impossible (even when .% is finite-dimensional). Two ways to remove the uniform nature
of the problem are often considered (independently): 1. minimizing over D an average
of risk taken over an a priori distribution over .# (Bayesian approach); 2. minimizing
over D the supremum over .%# of the risk (minimax approach). (It is also possible as it
happens often in finite-dimensional settings to further simplify the problem by reducing
the number |D| of decision rules imposing some constraints on them). The principle of
minimax is thus to simplify the optimality problem by reducing it to the selection of the
best decision rule in the worst case scenario. (It should be clear that the parameter f; € F
defining the worst case scenario for a given decision rule d may differ for another decision
rule d’. To find the minimax decision rule, the algorithm would be: for each decision
rule d, find the parameter f; that minimizes the maximum risk of d, and then select the
decision rule with minimum maximum risk. A minimax rule is minimax independently
of the value of the "true parameter” fy.). One may ask why consider this criterion (and
not any other based on optimization, e.g., maximax): first, minimax is attractive from
a risk management perspective as selecting the minimax decision rule provides minimal
guarantees for any risk-related properties of this decision rule (if we select the minimax
decision rule, then we know that it will always achieve lower risk than its worst case risk,
and this upper limit in terms of bad performance is the lowest among other decision rules);
secondly, it is a simple enough problem to be "solved". (See decision-theory for other
possible criteria). A natural limitation of the minimax criterion is that it says nothing



about what happens for better scenari: for them, the minimax decision rule could perform
much worse than another decision rules.

2. Why only minimax for nonparametric problem (and not Bayesian)? For
infinite-dimensional parameter space .%, there is in general no natural a priori distributions
(see Nemirovsky p.6).

3. Why upper bounds and lower bounds? In general, it is not possible to exactly
compute the maximum risk of the minimax decision rule (also known as the minimax
risk), hence the need for upper and lower bounds. Upper and lower bounds do not say
anything more than the minimax risk could say (in particular, about the exact performance
of any decision rule outside of its worst case scenario). If we could easily compute the
minimax risk, we would do it, but we generally cannot. For a given sample size n,
the objective is then to upper and lower bound the minimax risk by functions of n only
differing by some constant. If we can do so, then we approximately know the minimax
risk and it is then simple to design or select decision rules based on their maximum risk
(as we can now say which one is approximately minimax and which one is not).

2 Minimax risk and general reduction scheme

We consider estimation of a parameter fy in some class .% where the loss function
is directly expressed through some metric p. That is, we have some Borel probability
measures {Ps : f € %} on a measurable space (E, ) and the risk of an estimator fo of
fo is given by

R(fu> f0) = B, (0(fa» f0)))-

(It is implicitly assumed that we have a sample of size n i.i.d. according to fy so that the
expectation is taken with respect to the n-product distribution P?b”). The minimax risk
R,, is defined as the maximum risk of the minimax rule, that is,

R, = inf sup E]Pf(P(fnaf))) = sup EPf(p(‘ﬁn’f))
Jn feF feZF

where ¢, is the minimax rule. The primary objective is to find upper bounds U, and
lower bounds L, on R,,, that is,
L, <R, <U,.

We do not want any such bounds, but bounds as close as possible to one another. In
practice, we want to find a constant-factor approximation of the minimax risk, that is,
upper and lower bounds expressible as the same function of n but differing only by a
constant. In other words, we want to find a positive sequence (¢,,) converging to O (often,
some power functions) such that

L,=cy, <R, <Cyy =Upy,

where ¢, C > 0 are some universal constants. In this case, we write R, < i, and call
¥, a minimax rate of convergence (which is unique up to multiplicative constants).
An estimator f, of fy with maximum risk r 7, = suprezEp, (p(fu, f)) is said to be



(asymptotically) (minimax) efficient if
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Finding an upper bound is relatively easy since R,, is bounded by the maximum risk
of any estimator fo Of fo. That s,

R, = l?f;ug Ep, (p(far [))) < Sup Ep, (0(far ) =

for any estimator f,, of f.

Finding a lower bounds requires more work, but there exists a general "reduction
scheme" to find them. The reduction consists in discretizing F (in a not too patchy way),
as optimization over discrete sets is generally more manageable than over uncountable
ones. Finding minimax lower bounds then amounts to lower bounding the probability of
error in some testing problem. The reduction from estimation to testing proceeds as
follows:

1. Reduction to a probability bound: using Markov’s inequality, we have for all s > 0
that

E(p(fn’ )= SP(p(fn, f)=s),

hence to lower bound R,, it suffices to lower bound any of the minimax probabilities
given for any s > O by

inf sup Br(p(fu, f) = 5)-
fn fE?

2. Discretization of F: for any finite subset Fy; = {f1,..., far} of F, we naturally
have that

inf sup Pf(p(fn,f) >s) >inf  max Pf(p(fn,f) > 5).
o feF o felfiofm}

Intuitively, to make the lower bounds as large (i.e., good) as possible, we need the
discretization to be a good approximation of F. (This already indicates that the choice of
Fu is of great importance for the tightness of the bound. As shown in the next step, we
should focus on 2s-separated sets for which the choice of s becomes crucial).

3. Choice of 2s-separated hypotheses: if p(f;, f;) > 2sforalli,j=1,... ., M,i # j
(i.e., Far is a 2s-separated set), then for any estimator fn,

Pr(o(fas i) = 8) 2 Pr(y* #1)

wherey*: E — {1, ..., M} is the minimum distance (multiple deterministic) test defined
by
Y =arg {mln p(fus £3)-

.....

This follows directly from the triangle inequality. Thereafter, the problem reduces to
lower bounding the minimax probability of error

.....

where the infimum runs over all testsin {1, . . . , M } for appropriately selected 2s-separated



hypotheses Fpsr = {f1, ..., fu}. Indeed, from (1) and (2), we have

R, > spjTM (s).

The bound above, which we want as large as possible, is the product of s and the
minimax probability of error which depends on s. For s fixed, it is often natural to
consider a maximum 2s-packing for Fj,: indeed, we want the minimax probability of
error pefM (s) to be as large as possible; for this we want the testing problem to be more
difficult, that is, we want the distributions to be closer to one another, which happens
under the separation condition only when there are more of them until no more can be
added. The crux of the problem then becomes the choice of s for which we face a clear
trade-off: when s increases, the minimax probability of error generally decreases (indeed,
if s increases, distributions are more separated, and the testing problem becomes easier);
the choice of s (and hence the minimax rate) will then be dictated by the geometry of F.

3 Le Cam’s method

The general method developed above applies in the particular case of M = 2, in which
case, estimation reduces to binary hypothesis testing. The connection between binary
testing and total variation allows us to derive lower bounds for the minimax risk. The
method generalizes by considering two sets of distributions sufficiently separated.

The method relies on an impossibility result for binary testing due to Le Cam which
lower bounds the (sum of) probabilities of error by the total variation distance between
the two tested distributions. The intuition of the result is simple: if the distribution are
close (i.e., their total variation is small), testing is difficult, and errors are likely large.

Proposition 1. Let Py and P, be probability distributions on (E, ). Foranytesty: E —
{1, 2}, it holds that

P](lﬁ 1) +P2(lﬂ #£2)>1-TV(P,Py)

with equality if ¢ (x) = 1{p2(x) > p1(x)}.

Proof. Let A ={x € E : y(x) = 1}. Then P;(A°) +P2(A) = 1 — (P;(A) —P2(A)) >
1 —sup, |P1(A) —P2(A)|. Equality follows from the equivalent formulations of the total
variation distance. |

This is equivalently formulated by saying that the best binary test (in terms of sum of
error probabilities) has sum of error probabilities equal to 1 — TV (P, Py).

Corollary 2. Let Py and P, be probability distributions on (E, E). Then

iIl/I/f[]Pl(w #1)+P(y #2)] =1-TV(P,P)

where the infimum runs over all test . E — {1,2}.

Proof. Since any test ¢ is uniquely defined by A = {x € E : ¢/(x) = 1}, the infimum
over all binary tests can be taken over all subsets of E. Then taking the infimum over
Pi(A°) +Py(A) =1 - (P (A) — P,(A)) yields the result. O



The connection to the reduction scheme of last section is then straighforward. By
lower bounding the maximum over the distributions by their average (which always holds),
we get

. . .
Piegepy = 1 0% B0 #0)

> inf S [P0 # 1)+ B0 # 2]

1 1
= 5 - ETV(PfI’PfZ)

As everything we did, this holds in particular for n-product distributions, that is,

1
2

1
e _ _ _ ®n pdn
Pieenpony = 5 TV(EL"PLY.

Finally, if f; and f, are 2s-separated, then

1 1 ®n pBn
Rn > 5 - ETV(PfI ,sz ) .
The objective is then to find distributions P, and P, such that p( fi, f>) is large (allowing
s to be as large as possible) and TV(]P’%”, P?.Z”) is small. We illustrate this in examples.

Example 3 (Bernoulli Mean Estimation). Consider estimating the mean 6 € [—1, 1] of a
{+1}-Bernoulli random variable under the squared error loss p(8, ) = (6 — §). Denote
Ber([-1, 1]) the family of all {+1}-Bernoulli distributions. Fix § € (0, 1] and for any
a € [0,1/6], define P, € Ber([-1,1]) by Po,(X =1) = (1 +ad)/2 and P, (X = -1) =
(1—ad)/2. Then the mean of P, is 8(P,) = ad. We have p(6(P_1), 8(P;)) = 46%. Then,
via Le Cam’s method, the minimax risk for the problem is bounded by

R, > 6*(1 = TV(P®", P?"))

We now bound TV(P®},P{") in terms of 6 and n. By Pinsker’s inequality and the
tensorization identity for KL.-divergence, we have

1+0
1-6°

n n
TV(PQEM,P?”)Z < =Dk (P?]|IP}") = EDKL(P—IHPI) = 551055

| =

Since ¢ log *% < 367 for ¢ € [0, 1/2], we have TV(P®", P¥") < 6+/3n/2 for 6 < 1/2.

By taking 6 = 1/V6n, this guarantees that TV (P®”, PP") < %, and so

1

This is the standard rate of convergence (1/n in squared error) for the parametric estima-
tion. The sample mean n~! > iy X; for the above problem achieves mean-squared error
(1-6%/n.

Reference. E.7.7. in Duchi’s 311IT notes p.138.

Example 4 (Gaussian Location Model). Consider the problem of estimating the mean
6 € R of a normal random variable N (8, c?) with known variance o> > 0 under either



the squared error loss p(6,8) = (6 — )% or the absolute error loss v(6,8) = |0 — 4|.
Consider the normal distributions Py ~ N(0, 02) and P,5 ~ N(26, o) for some § > 0.
By second-moment bounding Gaussian r.v.s, we have

1

Since 26 and 0 are 462-separated with respect to p and 26-separated with respect to v, we
have by taking § = o-/2+/n that

2

1 2 1o
R > 1-=Ve-1|>—=——
n(p)— ( 2 e )—3 12”7

and

S 1 ? 1o
R 22(1-zvVe-1|>L=—2ZL.
®) 2( ¢ ) 6 12y

This is again an example of standard rates for parametric estimation. The sample mean
for the above problem achieves respective risks o2/n and V20~ /y/7n.

Reference. E.15.4. in Wainwright HDS p.492.

Example 5 (Normal Nonparametric Regression (at a point)). Consider the estimation of
the function m: [0, 1] — R defined via

Y; = m(X,) + &;

where we observe (X1,Y1),...,(X,,Y,) with X; ~ U[O0, 1] (or, equivalently, X; is deter-
ministic in [0, 1]) but not &; ~ N(0, c’?). Assume that

meM= {m: [0,1] > R:|m(y) —m(x)| < L]y — x| forall x,y € [0, 1]}.

The set & of distributions for the problem thus comprises all distributions of the form
p(x,y) =px)p(y|x) = ¢(y —m(x)) where m € M. We want to estimate m(x). Without
loss of generality, take x = 0, so the parameter of interest is 8 = m(0). Consider the
absolute error loss p(8g, 81) = |61 — 0g|. Define mo(x) =0 forall x. Let 0 > ¢ > 1 and
define
L(e —x) if0>x>eg,
my(x) = :
0 ifx > e.

Then mg,m; € M and p(mo(0),m;(0)) = Le. Consider the distributions Py, P; € &
respectively associated with mg, m; € M. Their KL-divergence is then given by

DerEallen = [ ot tog 2202 ay ax

//¢(Y) Og(Ly)(x))d dx

:/0 D1 (N(O, 1), N(my(x), 1)) dx.



Since D (N (u1, 1), N(u2, 1)) = (u1 — p12)?/2, we have

283

L> ¢ L
Dk (Pol|lPy) = 7‘/ (6 —x)%dx = —
0

Then by Pinkser’s inequality,

nlL?e?

TV(P:,P")? <
( ) D

By taking € = (%)1/3, we have TV (Py,P;) < 1/2, and thus

- L{ 3 \!/3 e 1/3
"= 4\nL? “\n)
The regression histogram 71 (0) for the above problem has risk (C/n)'/3. This proves that

R, = n~'3. For the d-dimensional problem, we find similarly that R,, < n~'/(>*@)  For
the squared error loss, we find R, = n~2/(2+d)

Reference. E.8. in Larry Wasserman’s notes on Minimax or S.5. in Tsybakov INE p.91.

4 Fano’s method

Fano’s method for minimax lower bounds was developed by R. Z. Has’ininskii. Ituses
the same reduction scheme introduced initially, but relies directly on multiple hypotheses
(i.e., M > 2), whereas Le Cam’s method was inherently based on binary hypotheses
(i.e. M = 2). For this, it exploits Fano’s inequality which provides impossibility result
for multiple hypothesis testing in terms of mutual information. Fano’s method generally
delivers tighter bounds and bounds where Le Cam’s method fails (e.g., with L? distance

p(f.8) = [(f-8)?.

Proposition 6 (Fano’s Inequality). For any Markov chain V. — X — V taking values in
V, it holds that

ha(P(V £ V) +P(V £ V) log(|V| - 1) > H(V|V),

where hy(p) = —plog p — (1 — p) log(1 — p) is the binary entropy function and H(V|V)
is the entropy of V conditioned on V. In particular, if V is uniform on V, then it holds that

I(V;X) +1og?2
log(IV) ~

where 1(V; X) is the mutual information between V and X.

P(V#V)>1-

Proof. P.2.19. and C.2.20. in Duchi IT notes p.27-28. O

This applies in particular when V = (X) for any testing function y : E — V. More-
over, in the uniform setting, the mutual information takes the equivalent representation

1 —
1V:X) = o > KL(P,|P),
vey



where P = ﬁ > vep Py (the result holds more genrally for any distribution Q dominating
P, forallv € V). We thus get the following corollary which bounds the average probability
of error (which can then be used to bound the max probability of error, and hence the
minimax probability of error, and thus the minimax risk).

Corollary 7. Let {Py,...,Pp} be Borel probability measures on (E,E). For any test
Sfunctiony: E — {1,..., M} and any Borel probability measure Q such that P < Q for
alli=1,..., M, it holds that

5™ KL(Pi||Q) + log 2

M
1
J— P ) > 1 -
M;l(wz)_ Tog M

Proof. This follows directly from Fano’s inequality. See L.28. in Larry minimax p.28 or
T.3.1. in Giraud HDS p.56. m|

As mentioned, this holds in particular for Q = P. Since (we can always lower bound
a max by an average — see p.113 in Tsybakov), we finally have that

Pr, =inf max  Pry#0)

M
1 o
2 lfdl/fﬁ ?:1 Pr(y i) (= P%,)

LS KL(P [IP) +log 2

>1-
logM

The next objective is to upper bound M ~! Zle KL(Py, |P). We have that

1 M 1 M M
o > KL(By|[P) < WZZKL(PMij)
i=1 i=1 j=1

< max KL(Py, ||Pf}.).
i#] ’

Thereafter, applying the reduction scheme (and using the fact that KL(IP’?,"HP?”) =

i J
nKL(Py[|Py,)), we can directly lower bound Ry, in terms of max;,; KL(Py, ||Pf;) when-
ever Fy is 2s-separated. That is, if Fjs is 2s-separated, then

nmax;z; KL(Py,[[Pf,) +log2
- log M '

R, = s|1

Then, as in Le Cam’s method, the objective is to find Fjs such that all the f; are far apart
in terms of p, but all the Py, are close enough in terms of Kullback-Leibner divergence.
To construct such families, we will often use scaled packing of some fixed sets. The
two following results will often be used: bounds on the packing number of the unit ball
in R? with respect to any norm-induced distance; exponentially large packings of the
d-dimensional hypercube with respect to the Hamming distance.

Proposition 8. Let || - || be any norm on R¢ and B\ the corresponding unit ball. Then

4 4\
(5) SNBys - 11, 0) < pack(Byp, [ - |, 6) < N(By, - I, 6/2) < (1 + 5)

8



Proof. 1..5.4. and L.5.6. in Duchi IT notes. O

Proposition 9 (Gilbert—Varshamov Bound). Let d > 1. There is a subset V of the
d-dimensional hypercube H% = {-1, 1} with cardinality |V| > ¢%/® such that

SRS

d
v =l =Y 1{vi # v/} 2

i=1
forallv #v' withv,v' € V.
Proof. L.7.5. in Duchi IT notes. O

Example 10 (Gaussian Location Model (bis repetita)). Consider the problem of estimat-
ing the mean 6 in the d-dimensional Gaussian location family Ny = {N4(8, 021y) : 6 €
R4} under the squared error loss p(6,8) = || — 0||%. We now construct an appropriate
family of probability measures by building a "local packing" of ® = R?. Consider V a
1/2-packing of the unit ball in R¢ with respect to the l,-norm. By standard results, the
cardinality of V is at least 2¢. Fix 6 > 0 and for each v € V, define 6, = 6v € R%. Then
we have

, 0
16 = vl = ollv = v/l > 5

for each distinct v,v’ € V. Thatis, {6, : v € V} is 62/4-separated with respect to p.

Moreover, ||6, — 0,/|l2 < 26. Define the distribution P, ~ N(8,,0%I;) € Ny. Since the
KL-divergence between normal distributions with identical covariance is

Dt (N0, D)IN (02, D)) = 3601~ 0727 (01 - ),

we have that

’ 62 ’
Dk (P}|IP}) = nDkr(N(6v, 02 1a) IN(8v', 0 14)) = nﬁllv —V'|I3.

Since ||v = v'[|l2 < 2, we have Dk (P?||P7",) < 2n6%/c%. By taking 6% = do? log 2/8n,
we find for d > 2 that

6? 2n52a—2+1og2)_ 52(1 1 1) _ do?log21 _ do?

J -2 :
"= 16 dlog? 16 128n 4 n

The sample mean for the above problem achieves risk Cdo?/n, hence R,, < do?/n.
Reference. E.7.11. in Duchi IT notes. See also Wainwright E.15.13. and Giraud S.3.3.

Example 11 (Fixed Design Normal Linear Regression). Consider estimating 6 € R? in
the linear regression model
Y=X0+¢

where X € R™*? is some fixed matrix and € ~ N(0, o%I,,). Consider the squared error
loss p(6,0) = || - H||%. Let & the family of distributions defined by this model, that is,

P = {N(X0,0°l,) : 6 € R}

We now construct an appropriate family of probability measures in & by building a "local
packing" of ® = R?. In this case, we use the Gilbert—Varshamov bound: it guarantees



the existence of a packing V of {~1, 1}¢ such that |V| > ¢%/® and ||v — v'||; > d/4 for
v #v’. Fix 6 > 0 and define 6, := 6v € R%. Then we have for v # v/,

4 ds>
16y = 6wy = 67D (v, =v))* =&l =Vl = -
Jj=1

‘We have

1
DRL(N(X0y, L) IN (X0, 1)) = —— X (0 = 0u1)Il3
82 2 2
< r‘_z’ymax(x)llv - V/”z
5°d

< F%znax(x)

where Yimax (X) denotes the maximal singular value of X. By taking 6> = 02/16y2,,,(X),
then for d > 32,

ds?
R, > —|1

=8 d/8

52d712nax(X)/2o-2+10g2)>d52(1 1 1) 1 do?
4 4

“e AT T s, 0

The rate can be rewritten as do2/ 256nyrzmx(n‘1/ 2X). This bound is of the right order in
terms of d, n, and o~ but our bounding through the maximal singular value of X makes
the bound not sharp. An exact calculation shows that the minimax value of the problem
is exactly otr((XTX)~1).

Reference. E.7.12 in Duchi or E.15.14. in Wainwright (for a different metric).

Example 12 (Normal Nonparametric Regression under L,-distance). Consider again the
problem of estimating the function f: [0, 1] — R defined via

Yi = f(Xi) + &

where we observe (X1, Y),...,(X,,Y,) with X; ~ U[0, 1] (or, equivalently, X is deter-
ministic in [0, 1]) but do not observe &; ~ N(0, c?). Assume this time that f lies in the
Holder class (8, L) (which comprises L-Lipschitz functions for 8 = 1), that is,

fex(BL)= {f: [0,1] > R: | fP(y) = FD )| < Lly-x|P ! forall x, y € [0, 1]}

where [ is the greatest integer strictly less than 8. The set & of distributions for the
problem is again composed of all distributions of the form p(x,y) = p(x)p(y|x) =
¢(y — f(x)) where f € £(B,L). We want to estimate f under the integrated squared
error loss (L,-distance) p*(f, g) = f (f — g)*. We now construct an appropriate family
F of probability measures in &2 by building a "local packing" of (83, L). Fix ¢ > 0, and
define m = [cn!'/#+D7]. By the Gilbert—Varshamov bound, there exists a packing V of
{=1,1}™ such that [V| > ¢™/8 and ||v —V'||; = m/4 for v # v’. Define

m

F = {fv(x) = Zvjqﬁj(x) 1V E V}

J=1

10



where m = [en'/PB*D7, h = 1/m, ¢;(x) = LhBK ((x —-xj)/h), x; = (j —1/2)/m, and
K: R — [0, +00) is any sufficiently smooth function supported on (—1/2, 1/2) such that
F C %(B,L). Forany v # v/ in V, we have

1, m 2 1/2
p(fos for) = [ /0 (Z(vj —v;>¢j<x>) dx]
J=1

m 1/2
= [Z(vj —v;.)Z/ ¢§(x) dx]
j=1 A
= VIV = v LIP3 | K]l

> C()h’B

for some cog > 0, where A; = [(j — 1)/m, j/m] for j = 1,2,...,m. The second equality
follows from the fact that K ((x — x;)/h)K((x —x;)/h) = 0 fori # j. The last inequality
follows by construction, since ||[v—v’||; > m/4. By standard results for the KL-divergence
of normals with same variance, we find that

1
D1 (By[|Py) = /O Dt (N (). 1), N(fyr (), 1)) dx

1 [! 5
-5 | th-prax

< Clhzﬁ

for some ¢y > 0. The last inequality follows from the fact that ||[v —v’||; < m. By taking
h= cl/zﬁcl_]/zﬁn_l/(zﬁ“)/32, we find for m > 32 that

cohﬁ(l nc1h2ﬁ+1og2)>cohﬁ( 11
5 >

B
l—=—Z2|>con %
m/3 2 4 4)—62”

for some ¢, > 0. Similarly, we directly find that R, (v) > czn_% for some c3 > 0 where
v(f,g) = f (f — g)?. Tt can be shown that there are kernel estimators that achieve these
rates, hence R,(p) = n~B/2F+1) and R, (v) = n=2P/(ZB+1) A similar calculation in d
dimensions shows that Ry, (vg) = n~28/(2+d)

Reference. E.16. in Larry minimax or S.2.6. in Tsybakov INE p.95.

Example 13 (Density Estimation). E.15.15. in Wainwright or S.9.2. in Larry minimax.

11
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