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1 Semiparametric models

A semiparametric model is a family of Borel probability distributions of the form

P = {P𝜃,𝐺 : 𝜃 ∈ Θ, 𝐺 ∈ G }

where Θ ⊆ R𝑑 is some finite dimensional space and G is some infinite dimensional space
(generally some space of distributions). Within the limit of this definition, semiparametric
models seem to be completely equivalent to nonparametric models (taking Θ = {0}); the
difference lies in the inferential procedure. In general, in semiparametric models, the
parameter of interest is only the finite dimensional one 𝜃 while the infinite dimensional
parameter 𝐺 is considered as a nuisance parameter. In nonparametric models, the param-
eter of interest is the infinite dimensional parameter 𝐺. Semiparametric models appear
naturally by simple relaxation of parametric models.

Example 1 (Symmetric Location Model). We observe 𝑋 = 𝜃 + 𝜀 where 𝜀 ∼ 𝐺 ∈ G𝑠 and
G𝑠 is the set of distributions on R with density 𝑔 with respect to the Lebesgue measure 𝜆
which is symmetric around 0. This defines a semiparametric model

P =

{
P𝜃,𝐺 :

𝑑P𝜃,𝐺

𝑑𝜆
(𝑥) = 𝑔(𝑥 − 𝜃), 𝜃 ∈ R, 𝐺 ∈ G𝑠

}
The parametric normal location-scale model with 𝜀 ∼ 𝑁 (0, 𝜎2) belongs to P .

Example 2 (Regression). We observe 𝑋 = (𝑌, 𝑍) ∼ P𝜃,𝐺 where

𝑌 = 𝜇(𝑍, 𝜃) + 𝜎(𝑍, 𝜃)𝜀,

𝑍 and 𝜀 are independent, the functions 𝜇 and 𝜎 are known up to the finite dimensional
parameter 𝜃, and 𝜀 ∼ 𝐺 ∈ G where G is the collection of all absolutely continuous
distributions on R. This defines a semiparametric model

P =

{
P𝜃,𝐺 :

𝑑P𝜃,𝐺

𝑑𝜆 × 𝑚
(𝑦, 𝑧) = 𝑔

(
𝑦 − 𝜇(𝑧, 𝜃)
𝜎(𝑧, 𝜃)

)
ℎ(𝑧), 𝜃 ∈ R𝑑 , 𝐺 ∈ G

}
where 𝑚 is a 𝜎-finite measure. The parametric normal (homoskedastic) linear regression
model belongs to P with 𝜀 ∼ 𝑁 (0, 1), 𝜃 = (𝛽, 𝜂) ∈ R𝑑 × R+, 𝜎(𝑍, 𝜃) = 𝜂, and
𝜇(𝑍, 𝜃) = 𝛽𝑇𝑍 .
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Compared to parametric settings, finding "good" estimators in semiparametric models
is not as straightforward. There is no direct intuitive method like MLE which delivers
estimators as "good" as one can hope (even before considering what good means). For
this reason, it is best to start by clearly defining a notion of efficiency in semiparametric
models. In parametric models, efficiency is defined by considering all 𝑛1/2-consistent
(regular) estimators1 for a given problem and finding a lower bound on their asymptotic
variances. The extension to semiparametric and nonparametric models is based on the
idea that estimation cannot be better in those models than efficient estimation in their
(one-dimensional) parametric submodel in which estimation is the most difficult (and so
efficient estimation is the least favorable).

2 Parametric efficiency bounds

Consider i.i.d. random variables 𝑋1, . . . , 𝑋𝑛 with finite dimensional parameter 𝜃 ∈
Θ ⊆ R𝑑 . Assume the models to be "regular enough" (see regularity conditions for CAN
of MLE): in general, we can assume local asymptotic normality (LAN) of the model

log
𝑑P𝜃+𝑛−1/2𝑣,𝑛

𝑑P𝜃,𝑛
= 𝑣𝑇Δ𝑛 −

1
2
𝑣𝑇 𝐼 (𝜃)𝑣 + 𝑜P𝜃,𝑛 (1),

where 𝐼 (𝜃) > 0 and Δ𝑛

𝑑−−−→
P𝜃,𝑛

𝑁 (0, 𝐼 (𝜃)), which holds, e.g., under quadratic mean

differentiability (QMD)∫ (√︁
𝑝𝜃+𝑣 (𝑥) −

√︁
𝑝𝜃 (𝑥) −

1
2
𝑣𝑇 ¤𝑙𝜃 (𝑥)

√︁
𝑝𝜃 (𝑥)

)2
𝑑𝜇(𝑥) = 𝑜

(
∥𝑣∥2

)
as ∥𝑣∥ → 0

with Δ𝑛 = 𝑛−1/2 ∑𝑛
𝑖=1

¤𝑙𝜃 (𝑥) and 𝐼 (𝜃) = E ( ¤𝑙𝜃 ¤𝑙𝑇𝜃 ). Note that under some regularity
conditions (including the (a.e.) existence of the pointwise derivative of 𝑝𝜃 with respect to
𝜃), we have that ¤𝑙𝜃 = 𝜕 log 𝑝𝜃/𝜕𝜃 = ¤𝑝𝜃/𝑝𝜃 and we find back the standard definition of the
score function ¤𝑙𝜃 and of the Fisher information 𝐼 (𝜃). Assume further that the estimators
are (locally) regular (see previous footnote) in the sense that for every sequence (𝜃𝑛)𝑛∈N
in Θ with lim𝑛→∞

√
𝑛(𝜃𝑛 − 𝜃) = 𝑣 ∈ R𝑘 ,

√
𝑛(𝑇𝑛 − 𝜃𝑛) ⇝P𝜃𝑛 𝐿 𝜃 ,

where 𝐿 𝜃 is a distribution that depends on 𝜃 but not on ℎ, or equivalently, for every
𝑣 ∈ R𝑘 ,

√
𝑛

(
𝑇𝑛 − 𝜃 − 𝑣

√
𝑛

)
⇝P𝜃+𝑣/√𝑛 𝐿 𝜃 .

Under these conditions, we have efficiency results: the convolution theorem of Kaufman
and Hajek, which shows that among 𝑛1/2-consistent regular estimators, those with normal
limit and inverse Fisher asymptotic variance are "best".

1Recall that: 𝑛1/2-consistent means that 𝑛1/2 (𝑇𝑛 − 𝜃) = 𝑂 𝑝 (1); regularity means that the estimators
have "limit distribution [that] does not depend on the direction of approach of 𝜃 to 𝜃0 (see Delatte HDstats).
Regularity is used for the convolution theorem to hold. If regularity is not assumed, one can consider LAM
theorems, but in semiparametric modelling it is standard to assume regularity (see comment S.2.3. p.27 in
Bickel et al.)
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Proposition 3 (Convolution Theorem). Let (P𝜃 : 𝜃 ∈ Θ) be Borel probability measures
where Θ ⊆ R𝑑 is open. If (P𝜃 : 𝜃 ∈ Θ) is differentiable in quadratic mean at 𝜃0 ∈ Θ with
invertible Fisher information matrix 𝐼 (𝜃0) and 𝑇𝑛 is a regular estimator of 𝜃 at 𝜃0 with
scaled limit distribution 𝐿 𝜃0 , then there exists a probability measure 𝑀𝜃0 such that

𝐿 𝜃0 = 𝑁 (0, 𝐼−1(𝜃0)) ∗ 𝑀𝜃0 .

In particular, if 𝐿 𝜃0 has variance 𝑉 (𝜃0), then 𝑉 (𝜃0) − 𝐼−1(𝜃0) is positive semidefinite.

Proof. T.8.8. in vdV AS p.115 or T.4.1. in Wellner notes p.110 or T.2.3.1. in
Bickel&Wellner EAESM p.24. The conditions can be relaxed, in particular to LAN. □

This equivalently says, if we denote Z𝜃0 ∼ 𝐿 𝜃0 the scaled weak limit of 𝑇𝑛, that there
are random variables 𝑍𝜃0 and Δ𝜃0 , independent of one another, such that Z𝜃0 = 𝑍𝜃0 +Δ𝜃0

where 𝑍𝜃0 ∼ 𝑁 (0, 𝐼−1(𝜃0)) and Δ𝜃0 ∼ 𝑀𝜃0 . "In words, [this] says that the [scaled]
limiting distribution of any regular estimator 𝑇𝑛 of 𝜃 must be at least as “spread out” as
the 𝑁 (0, 𝐼−1(𝜃0)) distribution of 𝑍𝜃0 ." (Wellner p.110) Thus among regular estimators
we could legitimately define an (asymptotically) efficient estimator as one for which
the scaled limiting distribution is exactly 𝑁 (0, 𝐼−1(𝜃0)). This can be restated in terms of
asymptotic optimality with respect to bowl-shaped loss functions, by applying Anderson’s
lemma.

Corollary 4 (Hajek, 1970)). Suppose the conditions of the convolution theorem hold for
(P𝜃 : 𝜃 ∈ Θ) and 𝑇𝑛. If 𝑙 : R𝑑 → R+ is bowl-shaped, then

lim inf
𝑛→∞

E 𝜃0 [𝑙 (
√
𝑛(𝑇𝑛 − 𝜃0))] ≥ E 𝜃0 [𝑙 (𝑍𝜃0)]

where 𝑍𝜃0 ∼ 𝑁 (0, 𝐼−1(𝜃0)).

Proof. C.1. in Wellner p.110 and "Asymptotic optimality theorem" in Bickel&Wellner
p.26. This obtains by combining the convolution theorem with Anderson’s lemma. □

The estimators achieving the efficiency bounds 𝑁 (0, 𝐼−1(𝜃)) can be completely char-
acterized (see L.8.14. in vdV AS p.120 or T.1. in BKRW EAESM p.24): we have
that √

𝑛(𝑇𝑛 − 𝜃𝑛) ⇝P𝜃𝑛 𝑁 (0, 𝐼−1(𝜃))

if and only if
√
𝑛

(
𝑇𝑛 − 𝜃𝑛 −

1
𝑛

𝑛∑︁
𝑖=1

𝐼−1(𝜃𝑛) ¤𝑙𝜃𝑛 (𝑋𝑖)
)
P𝜃𝑛−−−→ 0,

that is, 𝑇𝑛 is asymptotically linear in the efficient influence function 𝑙𝜃 (𝑥) = 𝐼−1(𝜃) ¤𝑙𝜃 (𝑥).
The restriction to regular estimators (which excludes some important estimators) can

be relaxed by considering a minimax framework. This gives the important LAM theorems
which deliver approximately the same results: the best estimators are those with limiting
scaled distribution 𝑁 (0, 𝐼−1(𝜃)).

Proposition 5 (LAM Theorem (Hajek, 1972)). Let (P𝜃 : 𝜃 ∈ Θ) be Borel probability
measures where Θ ⊆ R𝑑 is open. Let𝑇𝑛 be any estimator. If (P𝜃 : 𝜃 ∈ Θ) is differentiable
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in quadratic mean at 𝜃0 ∈ Θ with invertible Fisher information matrix 𝐼 (𝜃0) and 𝑙 : R𝑑 →
R+ is a bowl-shaped function, then for any 𝛿 > 0,

lim inf
𝑛→∞

sup
{ 𝜃 :∥ 𝜃−𝜃0 ∥<𝛿}

E 𝜃 [𝑙 (
√
𝑛(𝑇𝑛 − 𝜃))] ≥ E [𝑙 (𝑍𝜃0)]

where 𝑍𝜃0 ∼ 𝑁 (0, 𝐼−1(𝜃0)).

Proof. T.12.1. in Ibragimov&Has’minskii SE p.162 for 𝜑(𝜀) = 𝑛−1/2. Then R.2.12.2. in
Ibragimov&Has’minskii SE p.168 allows to restate the inequality as in T.4.2. in Wellner
notes p.110 or "Locally asymptotic minimax theorem" in Bickel&Wellner p.27 or T.16.25.
in Keener TS p.340, that is,

lim
𝑡→+∞

lim inf
𝑛→∞

sup
{ 𝜃 :

√
𝑛∥ 𝜃−𝜃0 ∥≤𝑡 }

E 𝜃 [𝑙 (
√
𝑛(𝑇𝑛 − 𝜃))] ≥ E [𝑙 (𝑍𝜃0)]

Another more refined version is T.8.11. in vdW AS p.117-118, which yields

sup
𝐼

lim inf
𝑛→∞

sup
𝑣∈𝐼
E 𝜃0+𝑣/

√
𝑛 [𝑙 (

√
𝑛(𝑇𝑛 − 𝜃0 + 𝑣/

√
𝑛))] ≥ E [𝑙 (𝑍𝜃0)]

where the first supremum runs over all finite subsets 𝐼 of R𝑑 . The result in vdV is proved
using the weak topology for experiments. (It is proved in greater generality in 3.11.5. in
WCEP vdW&Wellner p.417.) The condition of QMD with invertible Fisher can again be
weakened to LAN. The finer result as in vdV can be extended to other limit experiments
(see e.g. T.5. in Pollard’s thoughts (2000), Lecture 7 in Pollard’s Paris lectures (2001),
S.7.4. in Torgersen (1991), S.62. in Strasser (1985), or S.5. in vdV (2002)). □

Remark. All the results extend to estimation of 𝑞(𝜃) instead of 𝜃 where 𝑞 : R𝑑 → R𝑘

is differentiable. In this case, the information bound becomes ¤𝑞(𝜃)𝐼−1(𝜃) ¤𝑞(𝜃)𝑇 and the
efficient influence function 𝑙𝜃 (𝑥) = ¤𝑞(𝜃)𝐼−1(𝜃) ¤𝑙𝜃 (𝑥).
Addendum. Nuissance parameters. We derive parametric efficiency bounds in presence
of (finite-dimensional) nuissance parameters because the same ideas will be of use in the
semiparametric case. Consider 𝜃 = (𝜃𝑇1 , 𝜃

𝑇
2 )

𝑇 where 𝜃1 ∈ R𝑑 is the parameter of interest
and 𝜃2 ∈ R𝑘 is the nuisance parameter. Denote

𝐼 (𝜃) =
[
𝐼11 𝐼12
𝐼21 𝐼22

]
and 𝐼−1(𝜃) =

[
𝐼11 𝐼12

𝐼21 𝐼22

]
.

By taking 𝑞(𝜃) = 𝜃1 and using the formulas derived in the remark above, we find that the
information bound for estimating 𝜃1 is

𝐼11 = (𝐼11 − 𝐼12𝐼
−1
22 𝐼21)−1

and the efficient influence function for estimating 𝜃1 is

𝑙 = (𝐼11 − 𝐼12𝐼
−1
22 𝐼21)−1( ¤𝑙1 − 𝐼12𝐼

−1
22

¤𝑙2)

where ¤𝑙 = ( ¤𝑙𝑇1 , ¤𝑙
𝑇
2 )

𝑇 .
These results can be reinterpreted geometrically in terms of the Hilbert space 𝐿2(P𝜃 ).
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If we denote the linear span of 𝑥 by [𝑥], then the standard formulas2 for the projection
matrix yields that the projection Π( ¤𝑙1 | [ ¤𝑙2]) of ¤𝑙1 onto [ ¤𝑙2] is

Π( ¤𝑙1 | [ ¤𝑙2]) = 𝐼12𝐼
−1
22

¤𝑙2.

Then we get that
𝑙 = (E (𝑙∗1𝑙

∗𝑇
1 ))−1𝑙∗1

where
𝑙∗1 = ¤𝑙1 − Π( ¤𝑙1 | [ ¤𝑙2])

can be interpreted as the efficient score function for the estimation of 𝜃1. Similarly, we
can get that

Π(𝑙 | [ ¤𝑙1]) = (E ( ¤𝑙1 ¤𝑙𝑇1 ))
−1 ¤𝑙1.

This means that the projection of the efficient influence function for estimating 𝜃1 onto the
span of ¤𝑙1 is equal to the efficient influence function for estimating 𝜃1 when 𝜃2 is known.
Moreover, if ¤𝑙1 ⊥ ¤𝑙2, then 𝑙∗1 = ¤𝑙1 and so

𝑙 = (E ( ¤𝑙1 ¤𝑙𝑇1 ))
−1 ¤𝑙1 = Π(𝑙 | [ ¤𝑙1]),

that is, under orthogonality of the score function components, we have that "estimation
of 𝜃1 is asymptotically as difficult when 𝜃2 is unknown as when 𝜃2 is known".

3 Semiparametric efficiency bounds

There are two equivalent methods to derive efficiency bounds for semiparametric
models: one that applies when the parameters are defined as functions of P (and thus
also works for nonparametric models); one that applies when the parameters are defined
via implicit parametrizations (and thus applies more directly to semiparametric models).

The (standard) inner product on 𝐿2(𝜇) is simply denoted ⟨· , ·⟩, that is, if 𝑔, ℎ ∈ 𝐿2(𝜇),
then

⟨𝑔, ℎ⟩ =
∫

𝑔ℎ 𝑑𝜇.

If there is risk a confusion, we may write ⟨𝑔, ℎ⟩𝐿2 (𝜇) to make clear the measure with
respect to which integrals are taken.

3.1 Submodels and tangent spaces

Before introducing the two methods, we need to present the general idea of these
methods which accommodate infinite-dimensional parameters by considering parametric
one-dimensional submodels of the original model. A central object fo this approach is the
tangent space (something we already encountered in a different context when considering
the spans [ ¤𝑙1] and [ ¤𝑙2] in the parametric case).

For parametric regular models P = {P𝜃 : 𝜃 ∈ Θ ⊆ R𝑑}, we know that score
functions (or their generalization under QMD) play an important role. Suppose that P is
dominated by a measure 𝜇 so that P𝜃 ∈ P has 𝜇-density 𝑝𝜃 . Recall that under quadratic
mean differentiability (QMD) of P at 𝜃 (which is equivalent to Fréchet differentiability

2𝐴(𝐴𝑇 𝐴)−1𝐴𝑇 is the projection matrix onto the space spanned by the columns of 𝐴.
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of the map 𝜃 ↦→ √
𝑝𝜃 =: 𝑠𝜃 at 𝜃)∫ (√︁

𝑝𝜃+𝑣 (𝑥) −
√︁
𝑝𝜃 (𝑥) −

1
2
𝑣𝑇 ¤𝑙𝜃 (𝑥)

√︁
𝑝𝜃 (𝑥)

)2
𝑑𝜇(𝑥) = 𝑜

(
∥𝑣∥2

)
as ∥𝑣∥ → 0,

the score function is taken to be ¤𝑙𝜃 in the expression above. Then we can define the
tangent space ¤P at P𝜃 ∈ P as the linear span of the components of ¤𝑙𝜃 (which is closed
since finitely generated), that is, ¤P := [ ¤𝑙𝜃 ] = [ ¤𝑙𝜃,1, . . . , ¤𝑙𝜃,𝑑]. Since score functions have
mean zero E 𝜃 ( ¤𝑙𝜃,𝑖) = 0, we have that ¤P ⊆ 𝐿0

2(P𝜃 ) = {ℎ ∈ 𝐿2(P𝜃 ) : E 𝜃ℎ = 0} (see
E.2.4. for a proof).

Let us now consider the semiparametric and nonparametric cases. Let P be some
nonparametric model (dominated by a 𝜎-finite measure 𝜇) and let P∗ ∈ P be the true
distribution. We identify P with the subset S of the Hilbert space 𝐿2(𝜇) through the
correspondence P ↦→

√︃
𝑑P
𝑑𝜇

=: 𝑠. We then define a one-dimensional submodel of P

(for P∗) as any (one-dimensional) continuously differentiable curve S 1 of S such that
𝑠∗ ∈ S 1, that is, there exists a continuously Fréchet differentiable map𝐶 : 𝐵1(0;R) → S

with rank 1 derivative such that 𝐶 (𝑡0) = 𝑠∗ for some 𝑡0 ∈ 𝐵1(0;R). That is,

S 1 = 𝐶 (𝐵1(0;R)) = {𝑠𝑡 : 𝑡 ∈ 𝐶−1(S )}.

For a given submodel, the parametrization 𝐶 may not be unique, but under continuous
differentiability and the rank condition the linear space spanned by the tangent vector is
invariant under equivalent parametrizations (see BKRW p.49). For our purpose, we can
thus restrict attention to curves such that 𝐶 (0) = 𝑠∗, abuse terminology by calling curve
passing through 𝑠0 = 𝑠∗ (not only the image of any such 𝐶 but) the function 𝐶 itself, and
abuse notation by writing for a given submodel S1 parametrized by any such curve 𝐶

S 1 = S 𝐶 .

In what follows, we directly write P0 for P∗ and 𝑠0 for 𝑠∗. Moreover, since the assumption
that 𝐶 is Fréchet differentiable at 𝑠0 is equivalent to the fact that the model P𝐶 = {P𝑡 :
𝑡 ∈ 𝐶−1(S )} corresponding to S 𝐶 = {𝑠𝑡 : 𝑡 ∈ 𝐶−1(S )} is QMD at 0, we can consider
the score function of P𝐶 at P0 which we denote ¤𝑙𝐶 . Then we define the tangent set ¤P0

of P at P0 as the union of score functions ¤𝑙𝐶 for all one-dimensional submodels P𝐶 of
P (with 𝐶 (P∗) = 0), or equivalently, for all curves 𝐶 passing trough 𝑠0. That is,

¤P0 =
⋃

{¤𝑙𝐶 : 𝐶 is a curve of S passing through 𝑠0}

We then define the tangent space ¤P of P at P0 as the closed linear span of ¤P0, that is,

¤P = [ ¤P0] .

Naturally, we can define ¤S 0 and ¤S by

¤S 0 =
⋃

{ ¤𝑠𝐶 : 𝐶 is a curve of S passing through 𝑠0}

and
¤S = [ ¤S 0]
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where ¤𝑠𝐶 is the Fréchet derivative of 𝐶 (= 𝑡 ↦→ 𝑠𝑡 ) at 0 which relates to ¤𝑙𝐶 by

¤𝑙𝐶 = 2
¤𝑠𝐶
𝑠0

.

By definition and some convergence results (see E.2.4.), we have the following inclusions:

¤P0 ⊆ ¤P ⊆ 𝐿0
2(P0) and ¤S 0 ⊆ ¤S ⊆ 𝐿2(𝜇).

Example 6 (Dominated Family of Probability Measures on (R𝑑 ,B(R𝑑))). Let 𝜇 be a
fixed 𝜎-finite measure on (R𝑑 ,B(R𝑑)) and P the set of all probability measures on
(R𝑑 ,B(R𝑑)) dominated by 𝜇, that is,

P = {P ∈ M1(R𝑑 ,B(R𝑑)) : P << 𝜇}.

Then we claim that

¤P = 𝐿0
2(P0) = {𝑔 ∈ 𝐿2(P0) :

∫
𝑔 𝑑P0 = 0},

or equivalently that

¤S = {𝑔 ∈ 𝐿2(𝜇) : 𝑔 = 𝑔1[𝑠0>0] , ⟨𝑔, 𝑠0⟩ =
∫

𝑔𝑠0 𝑑𝜇 = 0}.

We should actually show that ¤P0 = ¤P = 𝐿0
2(P0).

We start with the direct inclusion ¤P0 ⊆ 𝐿0
2(P0). Let 𝑔 ∈ ¤P0. By definition (see

equivalence QMD and Fréchet differentiability – (1) in T.75.2. in Strasser), 𝑔 ∈ 𝐿2(P0)
and QMD at 𝑡 = 0 implies that

1
𝑡2

∫ (√︂
𝑑P𝑡
𝑑P0

− 1 − 𝑡

2
𝑔

)2

𝑑P0 = 𝑜 (1) as 𝑡 → 0+,

i.e.,
1
𝑡

(√︂
𝑑P𝑡
𝑑P0

− 1

)
𝐿2 (P0 )−−−−−→
𝑡→0+

1
2
𝑔.

Since 𝐿2 convergence implies 𝐿1 convergence, we have

1
2

∫
𝑔 𝑑P0 = lim

𝑡→0+

1
𝑡

∫ (√︂
𝑑P𝑡
𝑑P0

− 1

)
𝑑P0

= − lim
𝑡→0+

2
𝑡
𝑑2

2 (P0, P𝑡 ),

where the second inequality follows from the properties of the Hellinger distance. More-
over, QMD implies

lim
𝑡→0+

1
𝑡2
𝑑2

2 (P0, P𝑡 ) < +∞,

hence ∫
𝑔 𝑑P0 = 0.

7



We now show the reverse implication 𝐿0
2(P0) ⊆ ¤P0. To show this, we show that

𝐷𝐿0
2(P0) = {ℎ ∈ 𝐿0

2(P0) : ℎ is bounded} is dense in 𝐿0
2(P0) and is contained in ¤P0.

To see that 𝐷𝐿0
2(P0) is dense, consider 𝑔𝑛 = 𝑔1{ |𝑔 |<𝑛} , 𝑛 ∈ N, for 𝑔 ∈ 𝐿0

2(P0). Then
((𝑔𝑛 −

∫
𝑔𝑛 𝑑P0))𝑛∈N is a sequence in 𝐷𝐿0

2(P0) that approximates 𝑔 since for any 𝑛 ∈ N,∫ ((
𝑔𝑛 −

∫
𝑔𝑛 𝑑P0

)
− 𝑔

)2
𝑑P0 =

∫
(𝑔𝑛 − 𝑔)2 𝑑P0 −

(∫
𝑔𝑛 𝑑P0

)2

≤
∫

(𝑔𝑛 − 𝑔)2 𝑑P0

=

∫
|𝑔 |>𝑛

𝑔2 𝑑P0,

where the first equality follows from
∫
𝑔 𝑑P0 = 0 after expanding the square. To see that

𝐷𝐿0
2(P0) is in ¤P0, take ℎ ∈ 𝐷𝐿0

2(P0) and define for any 𝑡 ∈ R,

𝑝(𝑡) = exp(𝑡ℎ − 𝑏(𝑡))𝑝0

with
𝑏(𝑡) = log

∫
exp(𝑡ℎ)𝑝0 𝑑𝜇.

Then 𝑡 ↦→ 𝑝(𝑡) ∈ P is an exponential family, and for ℎ ≠ 0, regular with ¤𝑠(0) = ℎ𝑠0/2,
since ¤𝑏(0) =

∫
ℎ 𝑑P0 = 0. Therefore, ℎ ∈ ¤P0.

Since span( ¤P0) ⊆ 𝐿0
2(P0) by linearity of the integral and 𝐿0

2(P0) is closed, we have
that ¤P0 = 𝐿0

2(P0) implies ¤P = 𝐿0
2(P0). This concludes the proof.

Reference. E.3.2.1. in BKRW p.52 and L.B.1. in S&T p.334. The proof that QMD with
score 𝑔 implies that

∫
𝑔 𝑑P0 = 0 can be found in Strasser (1985) T.75.2. p.383 (see also

Appendix B for further references). For the proof that 𝐷𝐿0
2(P0) is dense in 𝐿0

2(P0), see
L.75.5. in Strasser (1985).

These definitions also allow us to recast the definitions of semiparametric and non-
parametric models. A nonparametric model P is a model that has maximal tangent
space ¤P = 𝐿0

2(P0). A semiparametric model P is a model that has tangent space ¤P an
infinite-dimensional proper subset of 𝐿0

2(P0).

3.2 Parameters defined via implicit parametrization

Consider a semiparametric model

P = {P𝜃,𝐺 : 𝜃 ∈ Θ, 𝐺 ∈ G }

where Θ ⊆ R𝑑 and G is an infinite-dimensional space. Fix the true distribution to be
P0 = P𝜃0,𝐺0 . Then define the submodels

P1 = {P𝜃,𝐺0 : 𝜃 ∈ Θ}

and
P2 = {P𝜃0,𝐺 : 𝐺 ∈ G }.

8



By definition, ¤P ⊇ ¤P1 + ¤P2. In general, the reverse inclusion holds, and we have an
equality ¤P = ¤P1 + ¤P2. The potential issue is that ¤P1 + ¤P2 might not be closed when
both P1 and P2 are infinite-dimensional.

Under regularity conditions, the Hajek–Le Cam convolution theorem with information
bounds derived in the case of (finite-dimensional) nuisance parameters can be extended
to models of the form of P (see C.3.4.1. in BKRW EAESM p.72). If 𝑇𝑛 is an estimator
of 𝜃0 locally regular at P0 for any parametric submodel, then the limit distribution of√
𝑛(𝑇𝑛 − 𝜃0) is the convolution of some distribution and the normal distribution with

mean 0 and covariance matrix (information bound)

(E 0(𝑙∗1𝑙
∗𝑇
1 ))−1 with 𝑙∗1 = ¤𝑙1 − Π( ¤𝑙1 | ¤P2).

Moreover, 𝑇𝑛 is efficient (in the sense of having scaled limit distribution the normal
distribution so defined) if it is asymptotically linear with efficient influence function

𝑙 = (E 0(𝑙∗1𝑙
∗𝑇
1 ))−1𝑙∗1.

The computation of the information bound seems to call for the determination of
¤P2 which is not a trivial task. Often, the exact determination of ¤P2 may be avoided

(as well as the computation of Π( ¤𝑙1 | ¤P2)). For instance, if 𝜃 is one-dimensional, one
may want to maximize the parametric bounds (E 0((𝑙1 − Π( ¤𝑙1 | [ ¤𝑙2])2))−1 over [ ¤𝑙2] where
¤𝑙2 runs over the score functions for (one-dimensional) parametric submodels of P2. If
the components of Π( ¤𝑙1 | ¤P2) can be written as the 𝐿0

2(P0) limits of sequences of ¤𝑙2’s,
then we obtain the information bound in the extended convolution theorem. (See BKRW
EAESM p.79-80 for a more general discussion of possible methods.)

If ¤𝑙1 ⊥ ¤P2, then 𝑙∗1 = ¤𝑙1, and so it is possible to estimate 𝜃0 as well as if the nuisance
parameter 𝐺0 was known. In this case, an efficient estimator is called adaptive since it
adapts to the unknown nuisance parameter (Stein, 1956).

3.3 Parameters defined via functions on P

Consider an arbitrary model P (dominated by a 𝜎-finite measure 𝜇). We identify P

with the subset S of the Hilbert space 𝐿2(𝜇) through the correspondence P ↦→
√︃

𝑑P
𝑑𝜇

=: 𝑠.
Suppose the parameter of interest is defined via the function 𝜓 : S → R𝑑 .

Assume first that 𝑑 = 1. The parameter (function) 𝜓 : S → R is said to be pathwise
differentiable at 𝑠0 ∈ S if there exists a bounded linear functional 𝜓̃ : ¤S → R defined
on the tangent space ¤S such that for any one-dimensional submodel S 𝐶 = {𝑠𝑡 : 𝑡 ∈
𝐶−1(S )} with 𝐶 (𝑠0) = 0 and tangent vector ¤𝑠 ∈ ¤S ,

𝜓(𝑠𝑡 ) = 𝜓(𝑠0) + 𝑡𝜓̃( ¤𝑠) + 𝑜(𝑡) as 𝑡 → 0. (†)

This means that the real-valued map 𝜆 : 𝑡 ↦→ 𝜓(𝑠𝑡 ) is differentiable in the ordinary sense at
𝑡 = 0 and that the derivative 𝑑𝜆(𝑡 )

𝑑𝑡

��
𝑡=0 = 𝜓̃( ¤𝑠) has a special representation as a continuous

linear functional on the tangent space ¤S . By the Riesz representation theorem, there
exists a unique ¤𝜓 ∈ ¤S such that

𝜓̃( ¤𝑠) =
∫

¤𝜓 ¤𝑠 𝑑𝜇 = ⟨ ¤𝜓, ¤𝑠⟩
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for all ¤𝑠 ∈ ¤S . We should call 𝜓̃ the pathwise derivative of 𝜓 at 𝑠0 and ¤𝜓 the Riesz
representer of (the pathwise derivative of) 𝜓 at 𝑠0. (Our notations should be dependent
on 𝑠0 or 𝑡 = 0, but we do not do it for simplicity.) The notion of pathwise differentiability
corresponds to the notion of Hadamard differentiability tangentially to ¤S (see A.5. in
BKRW p.453-464).

Remark. The pathwise derivative is a linear functional on the tangent space ¤S but the
condition for pathwise differentiability to hold is only to be verified on the generating
family ¤S 0 (since the defining property is only to be checked for curves 𝑡 ↦→ 𝑠𝑡 passing
through 𝑠0 with tangent ¤𝑠, that is, for ¤𝑠 in ¤S 0). The continuous linear functional
derived for ¤S 0 then extends (uniquely) to span( ¤S 0) by linearity and to ¤S by the Hahn–
Banach theorem. Moreover, for the application of the Riesz representation theorem, if
the representer ¤𝜓 is guessed, it only needs to be checked on ¤S 0 (and not on all of ¤S , for
it then extends uniquely), that is, it must be verified that 𝜓̃( ¤𝑠) = ⟨ ¤𝜓, ¤𝑠⟩ for all ¤𝑠 ∈ ¤S 0.
However, it should be clear (and also verified) that ¤𝜓 lies in ¤S (and not necessarily in
¤S 0).

Remark. Suppose we define the parameter via a function on P , that is, via a function
𝜈 : P → R𝑑 such that 𝜈(P) = 𝜓(𝑠). Define the continuous linear functional 𝜈̃ : ¤𝑙 → R by

𝜈̃( ¤𝑙) = 𝜓̃

( 𝑠0

2
¤𝑙
)
.

Then (†) holds if and only if

𝜈(P𝑡 ) = 𝜈(P0) + 𝑡 𝜈̃( ¤𝑙) + 𝑜(𝑡) as 𝑡 → 0

for any one-dimensional submodel P𝐶 in P corresponding to the submodel S 𝐶 where
¤𝑙 = 2 ¤𝑠

𝑠0
is the score function of P𝐶 . We should call this condition pathwise differentia-

bility of P at P0. By the Riesz representation theorem, there also exists a unique ¤𝜈 ∈ ¤P

such that
𝜈̃( ¤𝑙) = ⟨ ¤𝜈, ¤𝑙⟩ =

∫
¤𝜈 ¤𝑙 𝑑P0

for all ¤𝑙 ∈ ¤P . From 𝜈̃( ¤𝑙) = 𝜓̃
( 𝑠0

2
¤𝑙
)
, it directly follows that ¤𝜈 =

¤𝜓
2𝑠0

and so

⟨ ¤𝜈, ¤𝜈⟩ =
∫

¤𝜈2 𝑑P0 =
1
4

∫
¤𝜓2 𝑑𝜇 =

1
4
⟨ ¤𝜓, ¤𝜓⟩.

For reasons that will become clear later, the Riesz representer ¤𝜈 of the pathwise derivative
𝜈̃ is alternatively called the efficient influence function for P0 and is denoted ¤𝑣 := 𝑙.

Assume now that 𝑑 ≥ 1. The parameter (function) 𝜓 = (𝜓1, . . . , 𝜓𝑑) : S → R𝑑 is
said to be pathwise differentiable at 𝑠0 ∈ S if each real-valued function 𝜓𝑖 is pathwise
differentiable at 𝑠0. The pathwise derivative of 𝜓 is simply 𝜓̃ = (𝜓̃1, . . . , 𝜓̃𝑑) and
its Riesz representer ¤𝜓 = ( ¤𝜓1, . . . , ¤𝜓𝑑). If we abuse notation and denote ⟨𝑔, ℎ⟩ :=∫
𝑔ℎ 𝑑𝜇 ∈ R𝑑 and ⟨𝑔, 𝑔𝑇⟩ :=

∫
𝑔𝑔𝑇 𝑑𝜇 ∈ R𝑑×𝑑 for 𝑔 ∈ (𝐿2(𝜇;R))𝑑 and ℎ ∈ 𝐿2(𝜇;R),

then the pathwise derivative and representer can be written as

𝜓̃( ¤𝑠) = ⟨ ¤𝜓, ¤𝑠⟩.

Moreover, the relations we derived in Section 3.3 for parameters functions defined on P

extend similarly for 𝑑 ≥ 1 with 𝜈 : P → R𝑑 . In particular, we have with the extended
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notations
⟨ ¤𝜈, ¤𝜈𝑇⟩ = 1

4
⟨ ¤𝜓, ¤𝜓𝑇⟩.

In light of the definition of pathwise differentiability, there should exist a close
correspondence between pathwise derivative and information bounds. To see this, suppose
for simplicity that 𝜈 is real-valued, i.e., 𝑑 = 1. By Section 2 with 𝑞 = (𝑡 ↦→ 𝜈(P𝑡 )), we
know that the information bound for a submodel {P𝑡 : 𝑡 ∈ 𝐶−1(S )} with score function
¤𝑙 ∈ ¤P at 𝑡 = 0 is given by (

𝑑𝑞(𝑡)
𝑑𝑡

����
𝑡=0

)2
(𝐸 ( ¤𝑙2))−1 =

⟨ ¤𝜈, ¤𝑙⟩2

⟨¤𝑙, ¤𝑙⟩2
.

By taking an infimum over all one-dimensional submodels (or equivalently over all
elements ¤𝑙 of the tangent space ¤P), we have a lower bound for estimating 𝜈(P0). By
Cauchy—Schwarz’s inequality and the fact that ¤𝜈 ∈ ¤P , we have that

sup
¤𝑙∈ ¤P

⟨ ¤𝜈, ¤𝑙⟩2

⟨¤𝑙, ¤𝑙⟩2
= ⟨ ¤𝜈, ¤𝜈⟩.

Thus ⟨ ¤𝜈, ¤𝜈⟩ plays the role of the information bound. This result can be generalized
formally to 𝑑 > 1. We then obtain an extension of the Hajek–Le Cam convolution
theorem (see T.25.20. in VdV AS p.366 or T.3.2.2. in BKRW p.63). If 𝜈 : P → R𝑑 is
pathwise differentiable at P0 with Riesz representer ¤𝜓, ¤P0 = ¤P , and 𝑇𝑛 is an estimator
of 𝜈(P0) locally regular at P0 for any parametric submodel, then the limit distribution of√
𝑛(𝑇𝑛 − 𝜈(P0)) is the convolution of some distribution and the normal distribution with

mean 0 and covariance matrix (information bound)

⟨ ¤𝜈, ¤𝜈𝑇⟩ =
∫

¤𝜈 ¤𝜈𝑇 𝑑P0.

Moreover, 𝑇𝑛 is efficient (in the sense of having scaled limit distribution the normal
distribution so defined) if it is asymptotically linear in ¤𝜈.

The result can then be applied to semiparametric models where the parameters are
defined implicitly; in which case, we naturally find the correspondence ¤𝜈 = 𝑙 where 𝑙 is
the efficient influence function derived in the previous section.

Example 7 (Parametric Models (see BKRW p.60-61)). Let P = {P𝜃 : 𝜃 ∈ Θ ⊆ R𝑑}
be a 𝜇-dominated model with densities 𝑝𝜃 that is QMD at P𝜃 with score ¤𝑙𝜃 . Then
¤P = {ℎ𝑇 ¤𝑙𝜃 : ℎ ∈ R𝑑}. Define 𝜈 : P → R𝑘 the parameter of interest and consider

the map 𝑞 : R𝑑 → R𝑘 given by 𝑞(𝜃) = 𝜈(P𝜃 ). Then 𝜈 is pathwise differentiable if 𝑞 is
differentiable in the ordinary sense. Indeed, the submodel {P𝜃+𝑡ℎ : 𝑡 ∈ 𝐵1(0;R)} has
score ℎ𝑇 ¤𝑙𝜃 . Since by definition ⟨𝐼−1(𝜃) ¤𝑙𝜃 , ¤𝑙𝑇𝜃 ⟩ is the identity matrix, we have

𝜈(P𝜃+𝑡ℎ) = 𝑞(𝜃 + 𝑡ℎ)
= 𝑞(𝜃) + 𝑡 ¤𝑞(𝜃)ℎ + 𝑜(𝑡)
= 𝜈(𝜃) + 𝑡⟨ ¤𝑞(𝜃)𝐼−1(𝜃) ¤𝑙𝜃 , ¤𝑙𝑇𝜃 ℎ⟩ + 𝑜(𝑡).

By identification, we find that
¤𝜈 = ¤𝑞(𝜃)𝐼−1(𝜃) ¤𝑙𝜃 ,
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which is nothing more than the efficient influence function for the estimation of 𝜈(P𝜃 ) =
𝑞(𝜃). The standard information bound can then be naturally expressed as

⟨ ¤𝜈, ¤𝜈𝑇⟩ = ¤𝑞(𝜃)𝐼−1(𝜃) ¤𝑞(𝜃)𝑇 .

Another method to derive bounds in semiparametric models with this approach con-
sists in embedding P in a larger model P𝑒. Consider 𝜈𝑒 an extension of 𝜈 on P𝑒.
In general, ¤𝜈𝑒 is easy to compute when (nonparametric) P𝑒 is sufficiently large. Then
pathwise differentiability for both 𝜈 and 𝜈𝑒 yields ¤𝜈𝑒 − ¤𝜈 ⊥ ¤P , that is,

¤𝜈 = Π( ¤𝜓𝑒 | ¤P).

Viewed as an element of 𝐿2(P0), ¤𝜈𝑒 is said to a gradient of 𝜈 and ¤𝜈 the canonical gradient
of 𝜈. This gives another method to derive information bounds.

3.4 Examples: some efficiency bounds

There are two methods to derive bounds:
1. efficient influence function (with computation of projectors or not)
2. pathwise derivative: 2.a. find dual norm of pathwise derivative; or 2.b. find Riesz

representer (by guessing).
To prove pathwise differentiability, there are two methods:

A. guess representer and verify definition of pathwise differentiability;
B. a. assume pathwise differentiability and compute 𝜓̃ by Leibniz’s rule; b. verify

that 𝜓̃ is a bounded linear map on the tangent space; c. guess the representer ¤𝜙; d. verify
that ¤𝜙 lies in the tangent space.

3.4.1 Mean

We find the efficiency bound for mean estimation by guessing the Riesz representer
and verifying that the definition of pathwise differentiability holds (method 2.b.A).

Let P be a model dominated by a measure 𝜇 which concentrates on [−𝑀, 𝑀]. The
parameter of interest is

𝜈(P) =
∫

𝑥 𝑑P(𝑥).

Take 𝑠 =
√︁
𝑑P/𝑑𝜇 and define

𝜈(P) = 𝜓(𝑠) =
∫

𝑥𝑠2(𝑥) 𝑑𝜇(𝑥).

Fix 𝑠0. We claim that 𝜓 is pathwise differentiable at 𝑠0 with derivative

¤𝜓(𝑠0) (𝑥) = 2𝑠0(𝑥) (𝑥 − E 0(𝑋)) a.e. 𝜇.

We first verify that ¤𝜓 ∈ ¤P using the characterization of ¤P derived in Example 2.4.:
indeed, we have that

∫ ¤𝜓𝑠0 𝑑𝜇 = 2
∫
𝑠2
0 (𝑥) (𝑥 − E 0(𝑋)) 𝑑𝜇(𝑥) = 0. Then we verify

that the definition of pathwise differentiability holds for ¤𝜓. Since
∫
𝑠2(𝑥) 𝑑𝜇(𝑥) =
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∫
𝑠2
0 (𝑥) 𝑑𝜇(𝑥) = 1, we have

𝜓(𝑠) − 𝜓(𝑠0) − ⟨ ¤𝜓, 𝑠 − 𝑠0⟩ =
∫

(𝑥 − E 0(𝑋)) (𝑠 − 𝑠0)2(𝑥) 𝑑𝜇(𝑥)

= 𝑂 (∥𝑠 − 𝑠0∥2),

where the second inequality follows from the fact that
∫
(𝑥−E 0(𝑋)) (𝑠− 𝑠0)2(𝑥) 𝑑𝜇(𝑥) ≤

𝑐
∫
(𝑠 − 𝑠0)2(𝑥) 𝑑𝜇(𝑥) with 𝑐 = 𝑀 − E 0(𝑋). Therefore,

lim
∥𝑠−𝑠0 ∥→0

𝜓(𝑠) − 𝜓(𝑠0)
∥𝑠 − 𝑠0∥

= lim
∥𝑠−𝑠0 ∥→0

〈
¤𝜓, 𝑠 − 𝑠0

∥𝑠 − 𝑠0∥

〉
+ 𝐶∥𝑠 − 𝑠0∥ = ⟨ ¤𝜓, ¤𝑠⟩.

From this, it follows that the efficient influence function is

¤𝜈(𝑥) = 𝑥 − E 0(𝑋)

and the information bound for mean estimation is

⟨ ¤𝜈, ¤𝜈⟩ = Var0(𝑋).

Since the asymptotic variance of the sample mean 𝑋 is Var0(𝑋), it follows that the sample
mean is an efficient estimator for the mean.

Reference. E.3.3.2. in BKRW EAESM p.67-68. See also S.3. in SEBMM Sev-
erini&Tripathi p.191 where the guess for the representer is more natural as it is derived
from the computation of the linear functional 𝜓̃ by Leibniz’s rule. Moreover, the method
of Severini&Tripathi to prove pathwise differentiability is generally simpler than using
the definition as above: 1. assume pathwise differentiability and compute 𝜓̃ by Leibniz’s
rule; 2. verify that 𝜓̃ is a bounded linear map on the tangent space; 3. guess the representer
¤𝜙; 4. verify that ¤𝜙 lies in the tangent space.

3.4.2 Distribution function

We find the efficiency bound for estimating a distribution function method 2.b.B.
Let P be the set of Borel probability measures on R dominated by the Lebesgue

measure 𝜇. Consider the correspondence between P and S by the standard mapping
P ↦→ 𝑠 =

√︁
𝑑P/𝑑𝜇. Assume P0 is the true distribution. Define for any P ∈ P and any

𝜉 ∈ R, the parameter function

𝜓(𝑠) (𝜉) = 𝜈(P) (𝜉) = P((−∞, 𝜉]) =
∫
R

1(−∞, 𝜉 ] (𝑥)𝑠2(𝑥) 𝑑𝑥.

We start by characterizing the tangent spaces ¤P and ¤S . Since P is the set of all
Borel probability measures dominated by 𝜇, we have by E.2.4. that ¤P = 𝐿0

2(𝜇).
Fix 𝜉 ∈ R. Let 𝑠𝑡 be an element of a one-dimensional curve of S passing through

𝑠0. Assume 𝑡 ↦→ 𝜓(𝑠𝑡 ) (𝜉) (=: 𝐹𝑡 (𝜉)) can be differentiated at 𝑡 = 0 and denote 𝜓̃ the
derivative. By Leibniz’s rule, we have

𝜓̃( ¤𝑠) = 2
∫
R

1(−∞, 𝜉 ] (𝑥)𝑠0(𝑥) ¤𝑠(𝑥) 𝑑𝑥
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where ¤𝑠 ∈ ¤S 0 is the derivative of 𝑡 ↦→ 𝑠𝑡 at 𝑡 = 0. Since
∫
R
𝑠0(𝑥) ¤𝑠(𝑥) 𝑑𝑥 = 0, we can

rewrite
𝜓̃( ¤𝑠) = 2

∫
R

1(−∞, 𝜉 ] (𝑥)𝑠0(𝑥) ¤𝑠(𝑥) 𝑑𝑥 − 2𝐹0(𝜉)
∫
R
𝑠0(𝑥) ¤𝑠(𝑥) 𝑑𝑥.

The map 𝜓̃ is a bounded linear map on ¤S 0. Then we guess that the Riesz representer is

¤𝜓(𝑥) = 2
(
1(−∞, 𝜉 ] (𝑥) − 𝐹0(𝜉)

)
𝑠0(𝑥).

We verify our guess by making sure that ¤𝜓 is a representer by verifying that for all ¤𝑠 ∈ ¤S 0,

⟨ ¤𝜓, ¤𝑠⟩ =
∫

¤𝜓(𝑥) ¤𝑠(𝑥) 𝑑𝑥 = 𝜓̃( ¤𝑠)

and by verifying that ¤𝜓 ∈ ¤S through the characterization

⟨ ¤𝜓, 𝑠0⟩ =
∫
R

¤𝜓(𝑥)𝑠0(𝑥) 𝑑𝑥 = 2(𝐹0(𝜉) − 𝐹0(𝜉)) = 0.

Then the efficient influence function for the estimation of 𝐹0(𝜉) is

¤𝜈(𝑥) = 1(−∞, 𝜉 ] (𝑥) − 𝐹0(𝜉)

and so the efficiency bound is

1
4
⟨ ¤𝜓, ¤𝜓⟩ = ⟨ ¤𝜈, ¤𝜈⟩ =

∫ (
1(−∞, 𝜉 ] (𝑥) − 𝐹0(𝜉)

)2
𝑠2
0 (𝑥) 𝑑𝑥 = 𝐹0(𝜉) (1 − 𝐹0(𝜉)).

Since the empirical distribution functionF𝑛 (𝜉) = 1
𝑛

∑𝑛
𝑖=1 1(−∞, 𝜉 ] (𝑋𝑖) at 𝜉 has asymp-

totic variance 𝐹0(𝜉) (1 − 𝐹0(𝜉)), it is an efficient estimator for 𝐹0(𝜉).
Reference. E.5.3.1. in BKRW EAESM p.191-192 or S.3. in SEBMM Severini&Tripathi
p.196-197.
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A Dictionary between notations: ours to BKRW EAESM to
SEBMM Severini&Tripathi

We state the correspondences in the order of the title:

pdf1/2 : √
𝑝𝜃 =

√︃
𝑑P𝜃
𝑑𝜇

=: 𝑠(𝜃) ↔ 𝑠(𝜃) ↔ 𝜙(𝜃)

Score : 𝜕 log 𝐿𝜃

𝜕𝜃
= 2 ¤𝑠 (𝜃 )

𝑠 (𝜃 ) 1[𝑠 (𝜃 )>0] =: ¤𝑙 (𝜃) ↔ ¤𝑙 (𝜃) ↔ 𝑈 = ¤𝑆 ¤𝜙

Parameter via S : (↦→: S → R𝑑) =: 𝜓(𝑠) ↔ 𝜈(𝑠) ↔ 𝜌(𝑠)

Pathwise derivative : (↦→: ¤S → R𝑑) =: 𝜓̃( ¤𝑠) = ⟨ ¤𝜓, ¤𝑠⟩ ↔ ¤𝜈( ¤𝑠) ↔ ∇𝜌( ¤𝜙)

Riesz representer : (∈ ¤S ) =: ¤𝜓 ↔ ¤𝜈 ↔ 4𝜙∗

(𝐿2(𝜇) ⊇ ¤S ) − inner product : ( ¤S × ¤S → R) =: ⟨· , ·⟩ ↔ ↔ 1
4 ⟨· , ·⟩𝐹

Parameter via P : (↦→: P → R𝑑) =: 𝜈(P) ↔ 𝜈(P) ↔
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