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1 Efficient estimation

1.1 A little history of the Gauss–Fisher–Le Cam efficiency

There exists a number of criteria to evaluate estimators 𝜃𝑛 of a "true parameter"
𝜃0 (picked by nature among indexes 𝜃 ∈ Θ of a family of Borel probability measures
{P𝜃 : 𝜃 ∈ Θ}). A natural objective is that 𝜃𝑛 should be close to 𝜃0 in some sense. Many
of the evaluation criteria can be grounded more or less directly in a decision-theoretic
framework built up against a notion of risk. A barer approach (which can nonetheless
be connected in several ways to the statistical decision-theoretic framework) proceeds
directly by looking at the moments of the estimator 𝜃𝑛 under P𝜃0 to see how well the
estimator concentrates around 𝜃0. (In the one-dimensional case, it is natural to look at
the mean and variance of 𝜃𝑛 under P𝜃0 . The same idea generalizes to higher dimensions
up to infinity.1) In general, finite sample comparison is complicated, so we look at what
happens asymptotically, that is, when the number 𝑛 of observations grow to +∞. In this
case, it is natural to look at the moments of the limiting distribution of 𝜃𝑛 (under P𝜃0).

"In 1922, Fisher conjectured that, for [one-dimensional] regular [enough] models [...]:
(i) the ML estimator converges with asymptotic variance 𝐼 (𝜃0)−1;
(ii) if, for a sequence of estimators (𝜃𝑛), we have

√
𝑛(𝜃𝑛 − 𝜃0) ⇝P𝜃0

𝑁 (0, 𝑣(𝜃0)),
then 𝑣(𝜃0) ≥ 𝐼 (𝜃0)−1." (trans. from Moulines)
Fisher was right for (i). If Fisher was right for (ii), then it would have been possible to
easily define a notion of asymptotic efficiency for estimators in regular enough models
(and to show, in particular, that ML estimators are asymptotically efficient).2 (The idea
that we would a priori focus on normal limiting distributions for defining asymptotic
efficiency as in (ii) is not as restrictive as could be intuitively thought: normality as a
limiting distribution is in some sense "best" when it comes to concentration; this will be
demonstrated formally later).

It turns out that Fisher was not exactly right for (ii). A number of works was
completed in the 1930s and 1940s which increased the general belief that (ii) was true. The
"sharp" asymptotic properties of MLE conjectured in (i) were formally proved between
1934 and 1949 following the work of Doob and Wald. Another important step (which

1In the infinite-dimensional case, we deal with stochastic processes whose concentration can be evaluated
pointwise under some regularity conditions.

2This implied notion of Fisher efficiency in the one-dimensional case generalizes straightforwardly to
higher dimensions up to infinity with the proper extensions of the Fisher information and limiting distributions
(in particular, to tangent space and Gaussian processes in the infinite-dimensional case).
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turned out to be unconnected) was achieved between 1943 and 1946 with the derivation
of the (Fréchet–)Cramer–Rao lower bound3 which states that the minimal variance of
an unbiased estimator (under some regularity conditions) is the inverse of the Fisher
information. This finite sample result was (erroneously) believed to confirm the validity of
(ii) for asymptotic efficiency: an estimator with normal limit 𝑁 (0, 𝑣(𝜃0)) is approximately
unbiased, so it should hold that no estimator can be better that the one with limiting
distribution 𝑁 (0, 𝐼 (𝜃0)−1). (This connection between the bound and asymptotic efficiency
was stated explicitly by Cramer in his book of 1946 and many times later by other
statisticians; this interpretation of the bound is however misleading – as clear in the proofs,
there is no explicit connection between it and the asymptotic efficiency of estimators).
Based on the proved asymptotics of MLE and the newly derived information bounds, the
general state of beliefs in the late 1940s was that the conjecture (ii) was true. However, in
1951, Hodges provided a counterexample to the conjecture by exhibiting a superefficient
estimator of the Gaussian mean, that is, an estimator with normal limit and asymptotic
variance lower than 𝐼 (𝜃0)−1. Estimator of this sort are bad (as is seen for fixed 𝑛 at
parameters close to 𝜃0), but not all superefficient estimators are bad, as proved by Stein
in 1956 with the introduction of shrinkage estimators (for dimensions 𝑑 ≥ 3). If the
badly behaved supperefficient estimators of Hodges’s type could be easily discarded, the
good performing estimators of Stein’s type could not. They forced statisticians to give a
definitive answer to the correctness of Fisher’s conjecture.

It appeared, notably through the work of Le Cam, that the conjecture (ii) of Fisher
could be largely salvaged. This is true in particular for parametric estimation. In this case,
two broad solutions were devised. A first solution worked out by Hajek and Le Cam is to
consider local maximum risk (LAM) (but at the cost of hiding differences – see vdW in
The Statistical Work of Lucien Le Cam). A second solution worked out by Le Cam from
1953 is to show that in the parametric case superefficiency only happens on negligible
sets. Thereafter, the idea that best estimators have normal distribution with asymptotic
variance the inverse of the Fisher information almost holds in practice (and this can be
made precise).

If all is (almost) good with the Gauss–Fisher–Le Cam approach to efficiency in
parametric estimation, things are slightly more complicated in semiparametric and non-
parametric settings. In particular, superefficiency becomes a much bigger problem which
does not disappear as in parametric estimation (hence the necessity to consider some
uniform criteria such as LAM). Using the LAM approach (with limit experiments), a
lot can still be salvaged for regular enough models. In this context, a lot of work has
been done but many questions remain unanswered: in particular, lower bounds have been
worked out in many cases, but their sharpness is often an issue. For fully nonparametric
models (which are not regular enough), the approach proves limited (or difficult): this
justifies considering directly a full minimax approach which makes comparing estimators
much more manageable.

3Mauriche Fréchet is the first to have proved the bound in 1943. The same result was independently
obtained in 1945 by Rao and then in 1946 by Cramer.
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1.2 Fisher’s conjecture and superefficiency

1.2.1 Asymptotics of maximum likehood estimators

Proposition 1 (Consistency of MLE (1949)). Let {P𝜃 : 𝜃 ∈ Θ} be Borel probability mea-
sures with densities {𝑝𝜃 : 𝜃 ∈ Θ}. Suppose there exists 𝜃ML

𝑛 ∈ arg max𝜃 𝐿 (𝜃; 𝑋1, . . . , 𝑋𝑛)
where 𝑋1, . . . , 𝑋𝑛 ∼𝑖𝑖𝑑 P𝜃0 . If

1. Θ is compact;
2. E 𝜃0 ∥ log 𝑝𝜃

𝑝𝜃0
∥∞ < +∞;

3. for 𝑥 a.e., 𝜃 ↦→ 𝑝𝜃 (𝑥) is continuous;
4. P𝜃 ≠ P𝜃0 for all 𝜃 ≠ 𝜃0;

then
𝜃ML
𝑛

P𝜃0−−→ 𝜃0.

Proof. T.9.9. in Keener TS p.157 or T.2.3.1. in Moulines p.129 (where the condition of
existence of an MLE is even relaxed to asymptotic existence of an MLE). For a slightly
different version, see T.5.1. in Tsybakov p.117. See also S.5.2. and S.5.5. in vdW AS
p.44 and p.61. □

Proposition 2 (AN of MLE (1934)). Let {P𝜃 : 𝜃 ∈ Θ} be Borel probability measures
with densities {𝑝𝜃 : 𝜃 ∈ Θ}. Suppose there exists 𝜃ML

𝑛 ∈ arg max𝜃 𝐿 (𝜃; 𝑋1, . . . , 𝑋𝑛)
where 𝑋1, . . . , 𝑋𝑛 ∼𝑖𝑖𝑑 P𝜃0 . Suppose that

1. Θ ⊆ R𝑑 open;
2. 𝜃ML

𝑛 is consistent.
Suppose further that there exists an open neighborhood Θ0 ⊆ Θ of 𝜃0 such that:

3. the set 𝐴 = {𝑥 : 𝑝𝜃 (𝑥) > 0} is the same for all 𝜃 ∈ Θ0;
4. for a.e. 𝑥, 𝜃 ∈ Θ0 ↦→ 𝑝𝜃 (𝑥) is twice continuously differentiable;
5. there exist positive measurable functions 𝑔 and ℎ such that for all 𝜃 ∈ Θ0 and

𝑥 (𝜇-)a.e., ∥∇𝑙 (𝜃; 𝑥)∥2 < ℎ(𝑥), ∥𝐻𝑙 (𝜃; 𝑥)∥ ≤ ℎ(𝑥), and 𝑝𝜃 (𝑥) ≤ 𝑔(𝑥), and such that∫
𝐸
(1 + ℎ(𝑥))𝑔(𝑥) 𝑑𝜇(𝑥) < ∞ (where 𝜇 is dominating P𝜃 for all 𝜃).

Suppose finally that
5. the matrix 𝐼 (𝜃0) := −E 𝜃0 (𝐻𝑙 (𝜃0; 𝑋)), which is well defined from (4-5), is invertible.

Then √
𝑛(𝜃ML

𝑛 − 𝜃0) ⇝P0 𝑁 (0, 𝐼 (𝜃0)−1).

Proof. T.9.14. in Keener TS p.158 or T.2.3.3. in Moulines p.131 or T.5.2. in Tsybakov
notes p.126 or T.14 in Loubes p.33. The conditions stated are sufficient, but not necessary
(weaker versions exist, in particular by Le Cam – see T.5.39 p.65 in S.5.5. in vdW AS).
Our version is simply localized at 𝜃0 (and we use that matrix inversion is continuous as
in Wellner). The condition that 𝜃ML

𝑛 ∈ arg max𝜃 𝐿 (𝜃; 𝑋1, . . . , 𝑋𝑛) can be weakened as
in Moulines. Condition (5) implies, in particular, that for all 𝜃 ∈ Θ0, 𝑥 ↦→ ∇𝜃 𝑙 (𝜃; 𝑥)
is (P𝜃 -) square integrable and 𝑥 ↦→ 𝐻𝑙 (𝜃; 𝑥) is (P𝜃 -) integrable and that

∫
𝑝𝜃 (𝑥) 𝑑𝜇(𝑥)

can be differentiated twice with respect to 𝜃 ∈ Θ0 under the integral sign, but it is
also required to apply the dominated convergence theorem as used in the proof. See
S.5.2. in Pfanzagl p.113 (for details on conditions and explanation of simpler versions
using integral expansion, as in Moulines or Tsybakov, than proofs using Taylor–Lagrange
expansions, as in Loubes or Keener, following Cramer (1946)). □
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History. The idea of MLE was known at least from 1760. Fisher is the one who gave
MLE its central place in statistics with an important advocacy endeavor in 1922. The
asymptotic distribution of MLE starts with Pearson and Filon (1986), efficiency of MLE
was already suggested by Edgeworth (1908-9), Fisher gave the name of ML in 1922 and
conjectured in a broader context the good asymptotic properties of MLE. The hard part in
the CAN proof is the consistency, which (was not investigated by Fisher and) had to wait
for Wald (1949) for a correct proof (earlier attempts were all faulty, in particular Cramer
(1946)). Asymptotic normality given consistency is more straightforward and was proved
correctly by Doob (1934) under some restrictive hypotheses. (More general results were
derived later.) (See Johann Pfanzagl Mathematical Statistics: Essays on History and
Methodology.)

1.2.2 (Fréchet–)Cramer–Rao lower bound

Proposition 3 ((Fréchet)–Cramer–Rao Lower Bound (1943-1946)). Let {P𝜃 : 𝜃 ∈ Θ}
be Borel probability measures with densities {𝑝𝜃 : 𝜃 ∈ Θ}. Let 𝑇 : 𝐸 → R𝑑 be a (P𝜃 -)
square integrable statistic such that E 𝜃 (𝑇) is differentiable. Suppose that:

1. Θ ⊆ R𝑑 open;
2. the set 𝐴 = {𝑥 : 𝑝𝜃 (𝑥) > 0} is the same for all 𝜃 ∈ Θ;
3. for x a.e., 𝜃 ↦→ 𝑝𝜃 (𝑥) is differentiable, and 𝑥 ↦→ ∇𝜃 𝑙 (𝜃; 𝑥) is (P𝜃 -) square

integrable;
4. for all 𝜃 ∈ Θ, 𝐼 (𝜃) := E 𝜃 (∇𝜃 𝑙 (𝜃; 𝑋)∇𝜃 𝑙 (𝜃; 𝑥)𝑇 ), which is well-defined from (3), is

invertible;
5.

∫
𝑝𝜃 (𝑥) 𝑑𝜇(𝑥) and

∫
𝑇 (𝑥)𝑝𝜃 (𝑥) 𝑑𝜇(𝑥) can be differentiated with respect to 𝜃

under the integral sign.
Then, for all 𝜃 ∈ Θ,

Var𝜃 (𝑇) ≥ ∇𝜃E 𝜃 (𝑇)𝑇 𝐼 (𝜃)−1∇𝜃E 𝜃 (𝑇).

Proof. T.2.2. in Wellner notes p.83 or T.5. in Barra NFSM p.38 or T.5.10. in
Lehmann&Casella TPE p.120. (See also T.4.9. In Keener TS p.92 and T.1.4.28. in
Moulines p.70, both for unbiased estimators. See Tsybakov and Moulines for sufficient
integrability conditions under which (5) is true.) The first condition in (5) is not necessary
for the existence of the Fisher information (as we define it in the proposition), but it is
required to express it as a variance, and so proved the result by using the covariance
inequality (derived from Cauchy–Schwarz). □

2 Superefficient estimation

Given Borel probability measures {P𝜃 : 𝜃 ∈ Θ}, an estimator with limit distribution
𝑁 (0, 𝑉2(𝜃)) such that 𝑉2(𝜃) < 1/𝐼 (𝜃) for at least one 𝜃 ∈ Θ is said to be (Fisher)
superefficient. The definition naturally generalizes in higher dimensions.

Proposition 4 (Hodges’s Superefficient Estimator). Let 𝑋1, . . . , 𝑋𝑛 be i.i.d. 𝑁 (𝜃, 1) so
that 𝐼 (𝜃) = 1. Let �̄�𝑛 = 𝑛−1 ∑𝑛

𝑖=1 𝑋𝑖 , |𝑎 | < 1, and define

𝑇𝑛 =

{
�̄�𝑛 if |𝑋𝑛 | > 𝑛−1/4,

𝑎�̄�𝑛 if |𝑋𝑛 | ≤ 𝑛−1/4.
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Then √
𝑛(𝑇𝑛 − 𝜃) ⇝ 𝑁 (0, 𝑉2(𝜃))

where

𝑉2(𝜃) =
{

1 if 𝜃 ≠ 0,
𝑎2 if 𝜃 = 0,

and so 𝑉2(𝜃) < 1/𝐼 (𝜃) at 𝜃 = 0, that is, 𝑇𝑛 is Fisher superefficient.

Proof. E.3.1. in Wellner notes p.98 or E.16.1. in Keener TS p.320 or E.8.1. in vdW AS
p.109. □

Hodges’s estimator is thus supperefficient, which seems to contradict the many op-
timality properties of the sample mean in the GLM. However, superefficieny in this
case comes at a price (see E.16.1. in Keener TS). Let us consider the (𝑛 rescaled) risk
under squared error loss, namely 𝑛𝑅𝑛 (𝑇𝑛, 𝜃) = 𝑛E 𝜃 [(𝑇𝑛 − 𝜃)2]. It is easily seen that
𝑛𝑅𝑛 ( �̄�𝑛, 𝜃) = 1. We also have lim𝑛→∞ 𝑛𝑅𝑛 (𝑇𝑛, 𝜃) = 𝑉2(𝜃), but, for fixed 𝑛, the scaled
risk 𝑛𝑅𝑛 (𝑇𝑛, 𝜃) is close to 𝑎2 at 𝜃 = 0 and close to 1 everywhere else except on each side
of 𝜃 = 0 where it peaks to +∞ as 𝑛 → ∞. "The conclusion is that 𝑇𝑛 "buys" its better
asymptotic behavior at 𝜃 = 0 at the expense of erratic behavior close to 0. Because the
values of 𝜃 at which 𝑇𝑛 is bad differ from 𝑛 to 𝑛, the erratic behavior is not visible in the
pointwise limit distributions under fixed 𝜃." (vdW)

The next example due to Stein (1956) exhibits an estimator that is not Fisher supper-
efficient (from non-normal distribution – see R.7.2. Wellner notes p.188) but that satisfies
another form of superefficiency (which, defined as a non-asymptotic notion, takes care
of the "fixed n deficiencies" of Fisher superefficiency). An estimator is said4 to be Stein
superefficient if it is not Fisher efficient and its squared error loss risk (MSE) is lower
than that of a Fisher efficient estimator for all 𝜃 ∈ Θ and the inequality is strict for at least
one 𝜃 ∈ Θ. This thus translates in terms of domination and admissibility5 (which, unless
stated, are always taken with respect to MSE): an estimator that is not Fisher efficient
is Stein supperefficient if and only if it dominates a Fisher efficient estimator; if there
exists a Stein supperefficient estimator, then there is at least one Fisher efficient estimator
that is inadmissible; a Stein superefficient estimator need not be admissible (as it can be
dominated by another Stein superefficient estimator). In some sense, Stein superefficient
estimators are much more attractive than (some of) the pathological Fisher supereffi-
cient estimators, for they improve without trade-off upon an (almost noncontroversial)
integrated measure of efficiency (whereas Hodges’s estimator does not).

Proposition 5 ((James–)Stein’s Skrinkage Estimator). Let 𝑋1, . . . , 𝑋𝑛 be i.i.d. 𝑁 (𝜃, 𝐼𝑑)
where 𝑑 ≥ 3. Let �̄�𝑛 = 𝑛−1 ∑𝑛

𝑖=1 𝑋𝑖 , and define

𝑇𝑛 = �̄�𝑛

(
1 − 𝑑 − 2

𝑛∥ �̄�𝑛∥2

)
.

4This is our own convention: one limitation of the definition is that Fisher efficient estimators are not
unique and may have different MSE, so that a Stein superefficient estimator may exist and still be dominated
by a Fisher efficient estimator. (Note that this is a conjecture in need of an example.)

5For a given risk function 𝑅, a rule 𝛿 is said to be inadmissible if there is a rule 𝛿′ such that 𝑅(𝛿, 𝜃) ≥
𝑅(𝛿′, 𝜃) for all 𝜃 ∈ Θ and 𝑅(𝛿, 𝜃) > 𝑅(𝛿′, 𝜃) for some 𝜃 ∈ Θ. A rule such as 𝛿′ is said to be dominating the
rule 𝛿.
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Then �̄�𝑛 is UMVU and asymptotically efficient in the sense of Gauss–Fisher, but �̄�𝑛 is
inadmissible with respect to MSE. Indeed, 𝑇𝑛 dominates �̄�𝑛 with respect to MSE, and so
𝑇𝑛 is Stein superefficient. In particular,

𝑛E 𝜃 [∥𝑇𝑛 − 𝜃∥2] = 𝑑 − E 𝜃

[
𝑑 − 2
𝑛∥ �̄�𝑛∥2

]
< 𝑑 = 𝑛E 𝜃 [∥ �̄�𝑛 − 𝜃∥2] .

Proof. T.7.4. in Wellner notes p.185 or T.3.3. in Tsybakov INE p.162 or E.8.12. in vdW
AS p.119. or T.11.3. in Keener TS p.210. Note that the result is often stated for 𝑛 = 1, in
which case �̄�𝑛 = 𝑋1 (see S.5.4. in Tsybakov INE p.155 for the equivalence in terms of
risk between the models – this is also the link between parametric and nonparametric in
the interpretation of the Gaussian sequence model). □

Remark. Even if the James–Stein estimator is Stein superefficient, it is itself inadmissible.
(see Wellner R.7.3. p.188).

It can be further proved (see Wellner) that

E 𝜃 [∥𝑇𝑛 − 𝜃∥2]
E 𝜃 [∥ �̄�𝑛 − 𝜃∥2]

= 1− 𝑑 − 2
𝑑
E 0

[
𝑑 − 2

𝜒2
𝑑
(𝑛∥𝜃∥2/2)

] 
= 2/𝑑 if 𝜃 = 0,
→ 1 as 𝑛 → ∞ for fixed 𝜃 ≠ 0,
→ 1 as ∥𝜃∥ → ∞ for fixed 𝑛.

This shows that the improvement of the James–Stein estimator over the Fisher efficient
estimator is asymptotically negligible (see Tsybakov INE p.162). This suggests that
looking asymptotically at uniform (in 𝜃) measure of performance should rescue the
Gauss–Fisher notion of efficiency. (Note, however, that in light of what happens in the
non-asymptotic regime, the existence of Stein superefficiency remains a major conundrum
for the design of good estimation procedures!)

3 Le Cam, Kaufman, and Hajek to the rescue of Fisher effi-
ciency

The discussions following the examples suggest two intuitive solutions to salvage the
Gauss–Fisher approach from the pathologies of superefficiency, either:

- to restrict the class of estimators under consideration (in particular, only consider
estimators that are (locally) regular in the sense that their limit distribution does not
depend on the direction of approach of 𝜃 to 𝜃0 – Hodges’s and Stein’s estimators are
not locally regular in this sense as shown in vDw AS p.119 and Wellner notes p.99 and
p.188); or,

- to look at (locally) uniform measure of risks (in particular, LAM) (The virtue of
this approach is clear in the case of Hodges’s estimator – as the improvement is only
"pointwise" – but less so for the shrinkage estimator of Stein; the fact that it is also true
can be seen asymptotically, by remembering that Stein superefficiency is a non-asymptotic
concept).

A third solution is to investigate where supperfficiency occurs. If superefficiency is
measurably negligible, why care? Le Cam showed in 1953 that for parametric problems
superefficiency only happens on sets of Lebesgue measure zero.
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3.1 The "null set" rescue

Proposition 6 (Le Cam, 1953). Let {P𝜃 : 𝜃 ∈ Θ} be Borel probability measures with
densities {𝑝𝜃 : 𝜃 ∈ Θ}. Suppose that:

1. Θ ⊆ R𝑑 is open;
2. for 𝑥 a.e., 𝜃 ∈ Θ0 ↦→ 𝑝𝜃 (𝑥) is twice continuously differentiable;
3. for all 𝜃0 ∈ Θ, there exist an open neighborhood Θ0 ⊆ Θ of 𝜃0 and a positive

measurable functions 𝑔 and ℎ such that for all 𝜃 ∈ Θ0 and 𝑥 (𝜇-)a.e., ∥∇𝑙 (𝜃; 𝑥)∥2 < ℎ(𝑥),
∥𝐻𝑙 (𝜃; 𝑥)∥ ≤ ℎ(𝑥), and 𝑝𝜃 (𝑥) ≤ 𝑔(𝑥), and such that

∫
𝐸
(1+ℎ(𝑥))𝑔(𝑥) 𝑑𝜇(𝑥) < ∞ (where

𝜇 is dominating P𝜃 for all 𝜃);
4. for all 𝜃 ∈ Θ, the matrix 𝐼 (𝜃) := −E 𝜃 (𝐻𝑙 (𝜃; 𝑋)), which is well defined from (2-3),

is invertible.
If𝑇𝑛 is a statistic such that

√
𝑛(𝑇𝑛−𝜃) ⇝P𝜃 𝑁 (0, 𝑣(𝜃)) for some positive semi-definite

matrix 𝑣(𝜃), then there exists Θ𝑁 ⊆ Θ such that Θ𝑁 has Lebesgue measure zero and
𝑣(𝜃) − 𝐼−1(𝜃) is positive semi-definite for all 𝜃 ∉ Θ𝑁 .

Proof. T.4.16. in Shao MS p.287 which is based on Bahadur (1964) "On Fisher’s Bound
for Asymptotic Variances" which is itself a relaxation of regularity conditions of Le Cam
(1953). We use lightly different integrability conditions than Bahadur for consistency
with previous results. □

3.2 The "convolution and LAM theorems" rescue

One solution to salvage Fisher’s conjecture is to restrict the class of estimators under
consideration; this is done by the introduction of regular estimators.

Definition 7 ((Locally) Regular Estimator). Let (P𝜃 : 𝜃 ∈ Θ) be Borel probability
measures. An estimator 𝑇𝑛 is said to be a (locally) regular estimator of 𝜃 at 𝜃0 ∈ Θ if for
every sequence (𝜃𝑛)𝑛∈N in Θ with lim𝑛→∞

√
𝑛(𝜃𝑛 − 𝜃0) = ℎ ∈ R𝑘 ,

√
𝑛(𝑇𝑛 − 𝜃𝑛) ⇝P𝜃𝑛 𝐿 𝜃0 ,

where 𝐿 𝜃0 is a distribution that depends on 𝜃0 but not on ℎ.

Remark. 1. This is seen to be equivalent to the condition that: for every ℎ ∈ R𝑘 ,

√
𝑛

(
𝑇𝑛 − 𝜃0 −

ℎ
√
𝑛

)
⇝P𝜃0+ℎ/

√
𝑛
𝐿 𝜃0 .

The next result, known as the convolution theorem, initiated by Kaufman and de-
veloped by Hajek, shows that among regular estimators, those with normal limit and
inverse Fisher asymptotic variance are "best". The theorem is stated by Hajek under weak
regularity conditions which have become standard in the literature. We thus reproduce
(some version of) them. (As already pointed out, many of the previous results requiring
twice differentiability can be restated under these weaker conditions or similar ones.)

Proposition 8 (Convolution Theorem). Let (P𝜃 : 𝜃 ∈ Θ) Borel probability measures
where Θ ⊆ R𝑑 is open. If (P𝜃 : 𝜃 ∈ Θ) is differentiable in quadratic mean at 𝜃0 ∈ Θ with
invertible Fisher information matrix 𝐼 (𝜃0) and 𝑇𝑛 is a regular estimator of 𝜃 at 𝜃0 with
scaled limit distribution 𝐿 𝜃0 , then there exists a probability measure 𝑀𝜃0 such that

𝐿 𝜃0 = 𝑁 (0, 𝐼−1(𝜃0)) ∗ 𝑀𝜃0 .
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In particular, if 𝐿 𝜃0 has variance 𝑣(𝜃0), then 𝑣(𝜃0) − 𝐼−1(𝜃0) is positive semidefinite.

Proof. T.8.8. in vdW AS p.115 or T.4.1. in Wellner notes p.110 or T.2.3.1. in
Bickel&Wellner EAESM p.24. The conditions can be relaxed, in particular to LAN. □

This equivalently says, if we denote Z𝜃 ∼ 𝐿 𝜃0 the scaled weak limit of 𝑇𝑛, that there
are random variables 𝑍𝜃0 and Δ𝜃0 , independent of one another, such that Z𝜃0 = 𝑍𝜃0 +Δ𝜃0

where 𝑍𝜃0 ∼ 𝑁 (0, 𝐼−1(𝜃0)) and Δ𝜃0 ∼ 𝑀𝜃0 . "In words, [this] says that the [scaled]
limiting distribution of any regular estimator 𝑇𝑛 of 𝜃 must be at least as “spread out” as
the 𝑁 (0, 𝐼−1(𝜃0)) distribution of 𝑍𝜃0 ." (Wellner p.110) Thus among regular estimators
we could legitimately define an (asymptotically) efficient estimator as one for which
the scaled limiting distribution is exactly 𝑁 (0, 𝐼−1(𝜃0)). This can be restated in terms of
asymptotic optimality with respect to bowl-shaped loss functions, by applying Anderson’s
lemma.

Remark. See S.3.8. in Pfanzagl MS p.59 for why the interpretation of Wellner is somehow
precarious, and we need to rely on Anderson’s lemma for a better interpretation than the
"spreading out" of convolutions.

Definition 9 (Bowl/Bridge-Shaped Function). Let 𝑙 : R𝑑 → R+ be a function such that
𝑙 (𝑥) = 𝑙 (−𝑥) for all 𝑥. If {𝑥 : 𝑙 (𝑥) ≤ 𝑐} is convex for every 𝑐 ≥ 0, then 𝑙 is said
to be bowl-shaped. If {𝑥 : 𝑙 (𝑥) ≥ 𝑐} is convex for every 𝑐 ≥ 0, then 𝑙 is said to be
bridge-shaped.

Lemma 10 (Anderson’s Lemma). If 𝑋 is a random variable with values inR𝑑 and bridge-
shaped density and if 𝑙 : R𝑑 → R+ is a bowl-shaped function such that E [𝑙 (𝑋 + 𝑐)] < ∞
for all 𝑐 ∈ R𝑑 , then

E [𝑙 (𝑋 + 𝑐)] ≥ E [𝑙 (𝑋)]

for all 𝑐 ∈ R𝑑 .

Proof. T.16.17. in Keener TS p.331 or L.10.2. in Ibragimov&Has’minskii SE p.157.
This is actually a corollary of Anderson’s lemma (which can be found in L.10.1. in
Ibragimov&Has’minskii SE p.155 or S.3.8. in Pfanzagl MS p.59). Applying the corollary,
which can be expressed through convolutions, to centered multivariate normals yields the
result L.8.5. in vdW AS p.113 (see C.5.7. in Hopfner AS p.135 for a proof). See also
"The Brunn-Minkowski Inequality" (2002) by Gardner for broader perspective. □

Corollary 11 (Hajek, 1970)). Suppose the conditions of the convolution theorem hold for
(P𝜃 : 𝜃 ∈ Θ) and 𝑇𝑛. If 𝑙 : R𝑑 → R+ is bowl-shaped, then

lim inf
𝑛→∞

E 𝜃0 [𝑙 (
√
𝑛(𝑇𝑛 − 𝜃0))] ≥ E 𝜃0 [𝑙 (𝑍𝜃0)]

where 𝑍𝜃0 ∼ 𝑁 (0, 𝐼−1(𝜃0)).

Proof. C.1. in Wellner p.110 and "Asymptotic optimality theorem" in Bickel&Wellner
p.26. This obtains by combining the convolution theorem with Anderson’s lemma. □

Proposition 12 (LAM Theorem (Hajek, 1972)). Let (P𝜃 : 𝜃 ∈ Θ) Borel probability
measures where Θ ⊆ R𝑑 is open. Let𝑇𝑛 be any estimator. If (P𝜃 : 𝜃 ∈ Θ) is differentiable
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in quadratic mean at 𝜃0 ∈ Θ with invertible Fisher information matrix 𝐼 (𝜃0) and 𝑙 : R𝑑 →
R+ is a bowl-shaped function, then for any 𝛿 > 0,

lim inf
𝑛→∞

sup
{ 𝜃 :∥ 𝜃−𝜃0 ∥<𝛿}

E 𝜃 [𝑙 (
√
𝑛(𝑇𝑛 − 𝜃))] ≥ E [𝑙 (𝑍𝜃0)]

where 𝑍𝜃0 ∼ 𝑁 (0, 𝐼−1(𝜃0)).

Proof. T.12.1. in Ibragimov&Has’minskii SE p.162 for 𝜑(𝜀) = 𝑛−1/2. Then R.2.12.2. in
Ibragimov&Has’minskii SE p.168 allows to restate the inequality as in T.4.2. in Wellner
notes p.110 or "Locally asymptotic minimax theorem" in Bickel&Wellner p.27 or T.16.25.
in Keener TS p.340, that is,

lim
ℎ→+∞

lim inf
𝑛→∞

sup
{ 𝜃 :

√
𝑛∥ 𝜃−𝜃0 ∥≤ℎ}

E 𝜃 [𝑙 (
√
𝑛(𝑇𝑛 − 𝜃))] ≥ E [𝑙 (𝑍𝜃0)]

Another more refined version is T.8.11. in vdW AS p.117-118, which yields

sup
𝐼

lim inf
𝑛→∞

sup
ℎ∈𝐼
E 𝜃0+ℎ/

√
𝑛 [𝑙 (

√
𝑛(𝑇𝑛 − 𝜃0 + ℎ/

√
𝑛))] ≥ E [𝑙 (𝑍𝜃0)]

where the first supremum runs over all finite subsets 𝐼 of R𝑑 . The result in vdV is proved
using the weak topology for experiments. (It is proved in greater generality in 3.11.5. in
WCEP vdW&Wellner p.417.) The condition of QMD with invertible Fisher can again be
weakened to LAN. The finer result as in vdV can be extended to other limit experiments
(see e.g. T.5. in Pollard’s thoughts (2000), Lecture 7 in Pollard’s Paris lectures (2021),
S.7.4. in Torgersen (1991), S.62. in Strasser (1985), or S.5. in vdV (2002)). □
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